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Using genome-wide association, we identify common variants 
at 2p12–p13, 6q26, 17q23 and 19q13 associated with 
serum creatinine, a marker of kidney function (P = 10−10 to 
10−15). Of these, rs10206899 (near NAT8, 2p12–p13) and 
rs4805834 (near SLC7A9, 19q13) were also associated with 
chronic kidney disease (P = 5.0 × 10−5 and P = 3.6 × 10−4, 
respectively). Our findings provide insight into metabolic, 
solute and drug-transport pathways underlying susceptibility  
to chronic kidney disease.

In North America and Europe, chronic kidney disease (CKD) affects ~11% 
of adults. CKD is associated with high morbidity and, in the advanced 

stage, requires life-support treatment by renal dialysis or transplantation1. 
CKD is also a major risk factor for myocardial infarction and stroke.

CKD is a multifactorial disorder with an important genetic compo-
nent2. A number of monogenic disorders underlying CKD have been 
identified, though these account for only a small proportion of the 
total burden of kidney disease. Recent studies have identified common 
variants at the UMOD, SHROOM3, GATM and MYH9 loci that are 
associated with kidney function in European and African-American 
populations2,3. We carried out both a genome-wide association study 
and a replication study to identify loci associated with serum creatinine 
levels. Although creatinine levels may be partially influenced by non-
renal factors, including diet and generation from muscle metabolism, 
serum creatinine is a validated measure of glomerular filtration rate4.

Genome-wide association was done in 23,812 participants of 
European descent from nine studies; characteristics of participants 
and genotyping arrays used are summarized in the Supplementary 
Methods and in Supplementary Table 1. Creatinine levels were trans-
formed by log10 to achieve approximate normality, and SNP associa-
tions were tested by linear regression using an additive genetic model 
adjusted for age and sex. Principal component scores were included as 
ancestry covariates in regression analyses, and test statistics were cor-
rected for the genomic control inflation factor to adjust for population 
substructure (Supplementary Methods)5. Analyses were performed 
separately in each cohort and were followed by meta-analysis using 
z scores weighted by the square root of the sample size. Quantile-
quantile plots showed good adherence to null expectations (l = 1.024; 
Supplementary Fig. 1). Our genome-wide association study had 80% 
power to detect SNPs associated with 0.14% of population variation 
in creatinine levels at P < 5 × 10−7.

There were 109 SNPs associated with creatinine at P < 5 × 10−7, 
which were distributed over five loci (2p12–p13, 4q21, 6q26, 17q23 
and 19q13; Fig. 1 and Supplementary Fig. 2). At four of these loci 
(2p12–p13, 6q26, 17q23 and 19q13), common variants have not 
previously been reported to be associated with kidney function or 
CKD; at each locus, we selected the most strongly associated SNP 
for replication testing with creatinine in a further sample of 16,626 
Europeans (Supplementary Methods and Supplementary Table 2). 
All four SNPs showed strong replication with creatinine (P = 2.4 × 
10−3 to 7.0 × 10−9; Table 1 and Supplementary Table 3). At 4q21, the 
most strongly associated SNP was rs9992101 (P = 5.9 × 10−9), which is 
located in SHROOM3 and is in high linkage disequilibrium (LD) with 
rs17319721 (r 2 = 0.78, HapMap CEU population), a SNP previously 
reported to be associated with glomerular filtration rate2.

Next we tested the four top-ranking SNPs for association with esti-
mated glomerular filtration rate (eGFR) and cystatin c (two additional 
measures of kidney function4) and with CKD among the participants 
from the replication sample (Supplementary Methods). rs10206899 
(2p12–p13) and rs4805834 (19q13) were associated with eGFR, cystatin c  
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and CKD (Table 1 and Supplementary Table 4). In contrast, rs3127573 
(6q26) and rs8068318 (17q23) were associated with eGFR but not with 
cystatin c or CKD. None of the four SNPs were associated with weight, 
hypertension, diabetes or other clinical parameters known to influence 
creatinine levels (Supplementary Table 5), and the relationships of 
these SNPs with creatinine were similar among people with and without 
diabetes or hypertension (Supplementary Table 6).

rs10206899 (2p12–p13), which is associated with creatinine, eGFR, 
cystatin c and CKD, is near several genes, including NAT8, NAT8B, 
ALMS1, DUSP11 and TPRKB (Fig. 1). NAT8 is a biologically compelling 
candidate for the observed association. NAT8 is a member of the GCN5-
related N-acetyltransferase (GNAT) superfamily, a group of enzymes that 
catalyze transfer of an acetyl group from acetyl-coenzyme A to a wide 
range of acceptor substrates6. NAT8 is strongly and almost exclusively 
expressed in kidney (Supplementary Fig. 3), in particular by tubular cells 
of the renal cortex (Supplementary Figs. 4 and 5). Acetylation is a key 
metabolic pathway for the detoxification of nephrotoxic substances such 
as aminoglycosides, inhalational anesthetics and environmental toxins, 
including industrial solvents such as trichloroethylene7,8. rs10206899 
is in high LD (r 2 = 1.0) with the only common nonsynonymous SNP 
in NAT8, rs15358 (causing a A595G change). rs15358 produces a non-
conservative amino acid change (F143S) within the acetyl-coenzyme 

A binding site, an effect predicted to influ-
ence acetylation by NAT8 (Supplementary 
Fig. 6). rs15358 was also closely associated with  
creatinine levels in the genome-wide study  
(P = 1.8 × 10−8). Our findings raise the possi-
bility that common genetic variation in NAT8 
may influence acetylation pathways, distur-
bances of which are known to be associated 
with drug- and toxin-induced kidney injury.

NAT8B is highly homologous to NAT8 
and also contains an acetyltransferase 
domain but is only expressed at low levels in 
kidney (Supplementary Fig. 3). Mutations 
in ALMS1 are responsible for Alström  
Syndrome, a rare autosomal-recessive multi
system disorder characterized by progres-
sive kidney and hepatic failure, obesity and 
insulin resistance, and blindness and hear-
ing loss9. Although DUSP11 and TPRKB 
are also near rs10206899, neither has been 
implicated in kidney function. DUSP11 
is a dual-specificity protein phosphatase; 
TPRKB encodes the p53-related protein-

kinase–binding protein and is of unknown function. Neither is 
strongly or preferentially expressed in kidney.

rs4805834 (19q13) is near SLC7A9, a cationic amino acid transporter 
highly expressed in kidney tubular cells (Supplementary Fig. 3)10. SLC7A9 
is a strong candidate for the association of rs4805834 with creatinine, eGFR, 
cystatin c and CKD; mutations in SLC7A9 cause cystinuria and nephro-
lithiasis and are associated with increased risk of CKD10. rs4805834 is also 
near CCDC123 and C19orf40. The latter (also known as FAAP24) has been 
identified as a component of the Fanconi anemia core complex, which plays 
a crucial role in DNA damage response11 but has no reported relationship 
to kidney function. The function of CCDC123 is not known.

rs3127573 (6q26) and rs8068318 (17q23) were associated with creati-
nine and eGFR. rs3127573 is near SLC22A2, an organic cation transporter 
strongly and preferentially expressed in kidney (Supplementary Fig. 3) that 
contributes to secretion of creatinine and other substrates by renal tubular 
epithelial cells12. Common variants at this locus are reported to influence 
kidney injury caused by nephrotoxic drugs such as cisplatin13. rs8068318 is 
located in TBX2, which encodes a member of the highly conserved T-box 
family of transcription factors14. Mouse Tbx2−/− mutants have a range of 
morphological defects, including limb deformities and cardiac anoma-
lies, but a renal phenotype has not previously been described for them14. 
Tbx2 is widely expressed in many tissues, including developing and adult  
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Figure 1  Architecture of the loci associated with creatinine in the genome-wide association study. The 
most significant SNP in each region is plotted in blue. LD is based on the HapMap CEU sample and is 
color-coded as red (r 2 to top SNP, 0.8–1.0), orange (0.5–0.8), yellow (0.2–0.5) and white (<0.2).

Table 1  Association results for top-ranking SNPs in the genome-wide association and replication study

Creatinine
Chronic kidney disease 

(replication sample)

GWA sample Replication sample Combined

SNP Locus Alleles MAF n
Effect size  
(95% CI) P n

Effect size  
(95% CI) P

Effect size  
(95% CI) P

Odds ratio  
(95% CI) P

rs10206899 2p12–p13 A/G 0.22 23,812 −0.9  
(−1.2 to −0.6)

5.9 × 10−9 16,167 −1.0  
(−1.4 to −0.7)

7.0 × 10−9 −1.0  
(−1.2 to −0.7)

1.2 × 10−15 0.85  
(0.79 to 0.92)

5.0 × 10−5

rs3127573 6q26 A/G 0.13 21,857 1.4  
(1.0 to 1.8)

5.0 × 10−9 16,427 0.7  
(0.2 to 1.1)

2.4 × 10−3 1.1  
(0.8 to 1.4)

6.5 × 10−10 1.07  
(0.97 to 1.17)

0.17

rs8068318 17q23 A/G 0.27 23,812 0.9  
(0.6 to 1.2)

2.2 × 10−8 16,350 0.6  
(0.2 to 0.9)

6.1 × 10−4 0.8  
(0.6 to 1.0)

3.4 × 10−10 1.05  
(0.98 to 1.13)

0.16

rs4805834 19q13 G/A 0.13 23,812 −1.1  
(−1.5 to −0.7)

5.3 × 10−8 16,241 −0.9  
(−1.3 to −0.5)

4.7 × 10−5 −1.0  
(−1.3 to −0.7)

4.5 × 10−11 0.84  
(0.76 to 0.92)

3.6 × 10−4

Alleles, reference allele/minor allele; MAF, minor allele frequency; GWA, genome-wide association; effect size, % change in serum creatinine (95% CI) or odds ratio for CKD (95% CI) per copy 
of minor allele under an additive genetic model and adjusted for (i) age, gender and principal component scores in the genome-wide association study and (ii) age and gender in the replication 
study. Effect sizes were estimated by meta-analysis of cohort-specific beta estimates using the inverse variance method and a fixed effects model.
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kidneys15, but the function of Tbx2 in the kidney is not known. rs8068318 
is also near BCAS3 and hypothetical gene C17orf82. BCAS3 may be involved 
in angiogenesis, but is not known to be involved in kidney function.

In addition to SHROOM3, we also replicated previously reported 
associations2 of rs12917707 in UMOD (P = 1.7 × 10−5) and rs2467853 in 
GATM (P = 6.0 × 10−6) with creatinine in the genome-wide association 
study. Although we did not find a relationship of the MYH9 locus with 
creatinine, this may simply reflect the low prevalence (~4%) of the 
MYH9 risk haplotype in Europeans (Supplementary Methods)3.

Our findings of common genetic variants associated with creatinine, 
cystatin c and CKD provide insight into the metabolic, solute and drug- 
transport mechanisms underlying kidney function and CKD. Further  
evaluation of these pathways may enable biomarker discovery and the develop- 
ment of new strategies to protect kidney function and prevent CKD.

Note: Supplementary information is available on the Nature Genetics website.
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