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Smoking is a leading global cause of disease and mortality1. 	
We established the Oxford-GlaxoSmithKline study (Ox-GSK) to 
perform a genome-wide meta-analysis of SNP association with 
smoking-related behavioral traits. Our final data set included 
41,150 individuals drawn from 20 disease, population and control 
cohorts. Our analysis confirmed an effect on smoking quantity 
at a locus on 15q25 (P = 9.45 × 10−19) that includes CHRNA5, 
CHRNA3 and CHRNB4, three genes encoding neuronal nicotinic 
acetylcholine receptor subunits. We used data from the 1000 
Genomes project to investigate the region using imputation, which 
allowed for analysis of virtually all common SNPs in the region and 
offered a fivefold increase in marker density over HapMap2 (ref. 2) 	
as an imputation reference panel. Our fine-mapping approach 
identified a SNP showing the highest significance, rs55853698, 
located within the promoter region of CHRNA5. Conditional 
analysis also identified a secondary locus (rs6495308) in CHRNA3.

Smoking behavior and nicotine dependence are multifactorial traits 
with substantial genetic influences3. There is an urgent need to better  

understand the molecular neurobiology of nicotine dependence in order 
to design targeted, more effective therapies4. Recently, genome-wide asso-
ciation studies (GWAS) have established one locus associated with nico-
tine dependence and smoking quantity, which implicates a cluster of three 
genes, CHRNA5, CHRNA3 and CHRNB4 on chromosome 15q25, which 
encode neuronal nicotinic acetylcholine receptor subunits5–9. This locus 
is also associated with lung cancer8,10,11, peripheral arterial disease8 and 
chronic obstructive pulmonary disease and lung function12.

We initially performed a GWAS meta-analytic study of smoking-
related traits in a total sample of 41,150 individuals of European 
descent, sourced from several disease, population and control cohorts 
(Table 1, Supplementary Table 1 and Online Methods). As the cohorts 
were genotyped on a variety of different genome-wide SNP arrays 
(Table 1 and Supplementary Table 1), we first imputed genotypes for 
all data sets13 for all SNPs in the HapMap version release 22 (ref. 2).

The main focus of our analysis was on smoking quantity within 
current and past smokers, defined as a semiquantitative trait based 
on the self-reported variable of cigarettes smoked per day (CPD)8. We 
performed association analyses separately within each cohort under 
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an additive model using covariate effects for age, sex, disease case or 
control status where applicable, and other cohort-specific covariates 
(Supplementary Table 1). A meta-analysis was then carried out by 
combining study-specific β (regression coefficient) estimates using 
a fixed effects model14. In total, 15,574 subjects reported CPD values 
over zero and were used for the meta-analysis of smoking quantity 
(Table 1 and Supplementary Table 1). We followed up our most 
promising association findings by comparing them with results from 
two concurrent GWAS meta-analyses of smoking: the ENGAGE study 
of 46,481 subjects15 and the TAG study of 74,035 subjects16. We also 
made our meta-analysis results available to the authors of those stud-
ies to check their top findings for replication.

Our meta-analysis of smoking quantity identified the CHRNA5–
CHRNA3 locus on 15q25 as the single significant locus of note in the 
genome (Fig. 1, Table 2 and Supplementary Table 2), with a minimum 
P = 9.45 × 10−19 for rs1051730, a SNP which has been previously 
reported to be associated with traits related to smoking5–9; we also 
found highly significant P values for many other SNPs in the region 
(Supplementary Fig. 1 and Supplementary Table 2). All cohorts in 
the analysis contributed at least somewhat to the 15q25 association 
(Supplementary Fig. 1). Each copy of the A allele (34% frequency) had 
a quantitative effect size on smoking quantity of 0.079 (95% confidence 
interval 0.070–0.088), which is in line with previous estimates8. A joint 
analysis of our total data set, together with the TAG and ENGAGE data 
sets, for rs1051730 yielded P = 1.71 × 10−66 (Table 2).

Multiple variants at the 15q25 locus have been suggested to underlie 
its effect on smoking quantity, including a nonsynonymous SNP 
in CHRNA5 and variants that affect mRNA expression levels17–19.  
We utilized our very large sample, in combination with data from the 

1000 Genomes Project (see URLs), to perform fine mapping and mod-
eling of the 15q25 locus in relation to smoking quantity. We reasoned 
that with the near complete information on common SNPs derived 
from the 1000 Genomes data set, it might be possible to pinpoint a 
variant or combination of variants that can explain the entirety of 
the signal of association at 15q25. We used data from 108 estimated 
CEU European-ancestry haplotypes from the April 2009 release of 
the 1000 Genomes Pilot 1 data. This data set contained 2,189 SNPs 
in our region of interest (Online Methods), which was approximately 
a fivefold increase in density compared to the 437 SNPs in release 22 
of HapMap. By imputing genotypes for all SNPs across this locus 
from 1000 Genomes and by repeating the meta-analysis, we found 
that the most significant association was with a new and previously 
untested SNP which is not in the HapMap and is located within the 
5′ untranslated region of CHRNA5; this location makes it a candidate  
for affecting mRNA transcription (rs55853698, P = 1.31 × 10−16;  
Fig. 2). The P value for the commonly reported SNP rs1051730 in this 

Table 1  Summary information for the cohorts used in meta-analysis

Label Description Genotyping

Sample Sizes

All CPD > 0 Ever Never Current Non-current

WTCCC-RA Rheumatoid arthritis cases Affymetrix 500K 1,860 NA NA NA 262 558

EPIC Obesity case-control Affymetrix 500K 3,516 NA 1,927 1,589 353 1,574

WTCCC-HT Hypertension cases Affymetrix 500K 1,952 830 NA NA 1,274 672

GEMS Dyslipidemia case-control Affymetrix 500K 1,847 862 910 793 268 642

GSK-COPD COPD case-control Illumina 550 1,633 1,632 NA NA 725 905

GSK-Bipolar Bipolar depression case-control Illumina 550 1,805 944 1,008 790 498 510

GSK-UPD Unipolar depression case-control Illumina 550 1,792 899 935 856 503 432

WTCCC-IBD Crohn′s disease cases Affymetrix 500K 1,748 NA 713 540 713 420

KORA Population-based Affymetrix 500K 1,644 253 811 831 217 1,425

KORCULA Population-based Illumina 300 827 NA 376 451 179 654

LOLIPOP Population-based Affymetrix 500K 1,288 650 653 635 258 395

MedStar Coronary artery disease case-control Affymetrix 6.0 1,322 820 853 469 300 553

ORCADES Population-based Illumina 300 692 NA 288 404 60 632

PENNCATH Coronary artery disease case-control Affymetrix 6.0 1,401 NA NA NA 464 612

POPGEN Population-based Affymetrix 6.0 1,107 573 495 608 NA NA

CoLaus Population-based Affymetrix 500K 5,636 3,132 3,357 2,275 1,485 1,872

SardiNIA Population-based Affymetrix 500+10K 4,305 1,731 1,743 2,562 873 3,432

SHIP Population-based Affymetrix 6.0 4,080 2,011 2,631 1,449 1,240 2,840

VIS Population-based Illumina 300 769 NA 441 328 212 557

WTCCC-CAD Coronary artery disease cases Affymetrix 500K 1,926 1,237 1,457 461 239 1,218

TOTALS 41,150 15,574 18,598 15,041 10,123 19,903

Further details are given in Online Methods and Supplementary Table 1; NA, not applicable.
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Figure 1  Plot showing the significance of association of all SNPs in the 
genome-wide smoking quantity meta-analysis. SNPs are plotted on  
the x axis according to their positions on each chromosome against 
association with smoking quantity on the y axis (−log10 P value). SNPs  
with P values < 1.0 × 10−5 are highlighted in green.
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analysis was similar but slightly less significant (P = 1.47 × 10−15). The 
P values for our 1000 Genomes analysis were generally higher than 
those from our HapMap-based analysis because not all of our study 
cohorts were included in the 1000 Genomes imputation (see Online 
Methods). rs55853698 is a G/T substitution, where the G allele has a 
frequency ranging from 0.313–0.378 across the various cohorts.

To investigate whether the association to smoking quantity at 15q25 
can be explained completely by rs55853698, we carried out tests of asso-
ciation for all SNPs spanning the CHRNA5-CHRNA3 locus conditional 
upon this SNP (Fig. 2). Residual association was still detected at 
many SNPs in the region, with the most significant signal occurring 
at rs6495308 (P = 3.96 × 10−5), which is located within an intron of 
CHRNA3 (Fig. 2). In the unconditioned analysis, rs6495308 has a 
significance of P = 3.30 × 10−10. Further conditioning on rs6495308 
after conditioning on rs55853698 leaves no obvious signal of association 
in the region (Supplementary Fig. 2), suggesting that these two SNPs 
together could be sufficient to explain the genetic effect.

It has previously been suggested18 that a nonsynonymous SNP, 
rs16969968, in CHRNA5 is associated with nicotine dependence risk 
and lung cancer risk, but also that variants that cause high expression 
of CHRNA5 mRNA, tagged by rs588765, increase the risk for nicotine 
dependence independently. The marginal P values of rs16969968 and 
rs588765 in our meta-analysis were P = 1.64 × 10−18 and P = 1.74 × 
10−3. Conditional analysis on rs16969968 within our cohorts still left 
residual association within the region (Supplementary Fig. 2), with the 
most significant signal again occurring at rs6495308 (P = 1.54 × 10−5). 
Conditioning on both rs16969968 and rs588765, that is, the combina-
tion previously proposed18, leaves no obvious signal of association 
(Supplementary Fig. 2). To further investigate which pair of SNPs best 
explains the signal of association, we used the Bayesian information 

criteria (BIC) measure of model fit, in which smaller values indicate 
a better fit20. For the previous model18, that is, conditioning on both 
rs16969968 and rs588765, we obtained BIC = 22,719.87 and a posterior 
probability 0.15. For the model conditioning on the new promoter 
SNP rs55853698 and rs6495308, we obtained BIC = 22,716.49 and a 
posterior probability 0.85, which indicates a better model fit.

Examination of the linkage disequilibrium (LD) structure between 
the SNPs considered here shows that rs1051730, rs16969968 and 
rs55853698 are all close-tagging proxies of each other (all pairwise 
r2 > 0.96). These variants either tag or potentially cause the princi-
pal risk for high smoking quantity attributable to the 15q25 locus, 
but the high LD makes it difficult to assign specific causality. The 
SNPs that show residual association, rs588765 and rs6495308, are 
in low LD with each other (r2 = 0.21) and are both in only modest 
LD with the principal SNPs (maximum r2 = 0.47). It is not therefore 
clear that this locus can be completely understood in the way previ-
ously proposed18. Although the nonsynonymous SNP in CHRNA5, 
rs16969968, may be important, we have identified a new and poten-
tially functional SNP in the 5′ untranslated region of this gene that 
is a close proxy for the nonsynonymous SNP in terms of LD, but 
which shows a slightly more significant association in our meta-
analysis. Furthermore, although rs588765 can explain much of the 
secondary or residual association at this locus, we find that a largely 
independent variant within CHRNA3, rs6495308, is the best tagger 
of the residually associated variation; this variant also contributes to 
a better-fitting two-SNP model and has a much stronger marginal 
significance in our unconditioned analysis (P = 3.30 × 10−10 for 
rs6495308 as compared to P = 1.74 × 10−3 for rs588765).

To our knowledge, our analysis has, for the first time, surveyed 
virtually all of the common SNPs in the 15q25 region and provides 
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Figure 2  Chromosome 15q25 signal plots. 
Signal plot based on the 1000 Genomes 
imputation and meta-analysis of smoking 
quantity association (top). SNPs are plotted 
by their positions on the chromosome against 
association with smoking quantity (−log10 
P value) on the left y axis. The five SNPs 
with the lowest P values from the HapMap 
imputation are highlighted in red. The five 
SNPs with the lowest P values from the 1000 
Genomes imputation are highlighted in green 
(unless already colored red). The rs identities 
of highlighted SNPs are given in the box. 
Recombination rates across the region are 
shown by the red line plotted against the right 
y axis. Chromosome 15q25 signal plot based 
on the 1000 Genomes imputation and meta-
analysis of smoking quantity association, 
conditional on rs55853698 (middle). The 
five SNPs with the lowest P values from 
the conditional analysis are highlighted in green. The five SNPs with the lowest P values from the unconditioned HapMap imputation analysis are 
highlighted in red. Genes and the positions of exons using data from the UCSC genome browser (bottom; see URLs).

Table 2  Summary information for selected SNPs at 15q25 from meta-analysis of association with the Smoking Quantity (SQ) phenotype

SNP Chr. Position Coded allele Coded allele freq.

Ox-GSK TAG ENGAGE Combined

P Phet P P P β s.e.m.

rs588765 15 76,652,480 T 0.43 1.74 × 10−3 0.50 NA NA NA NA NA

rs16969968 15 76,669,980 G 0.65 1.64 × 10−18 0.86 1.85 × 10−27 1.53 × 10−23 4.29 × 10−65 −0.078 0.0046

rs1051730 15 76,681,394 G 0.66 9.45 × 10−19 0.68 3.62 × 10−27 9.98 × 10−25 1.71 × 10−66 −0.079 0.0046

rs6495308 15 76,694,711 T 0.77 3.30 × 10−10 0.10 7.99 × 10−24 1.60 × 10−13 5.82 × 10−44 0.073 0.0052

Our study is referred to as Ox-GSK. Information for all SNPs spanning the 15q25 locus in our genome-wide analysis is given in Supplementary Table 2. Chr., chromosome; Freq., 
frequency; Phet, heterozygosity P value; NA, not applicable.
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one of the first examples of how data from the 1000 Genomes Project 
can contribute new information to mapping and characterizing  
loci for complex traits. We recommend that further analysis of this 
locus should not be limited in focus to CHRNA5, nor particularly to 
the nonsynonymous SNP rs16969968. It is notoriously difficult to dis-
tinguish functional variation when there is high LD across a region21. 
There are many ways in which variants can be functional, including 
expression regulatory changes that affect either close or distant genes, 
epigenetic changes, splicing effects, alterations to microRNA bind-
ing sites, or noncoding RNAs21. It is also conceivable that association 
with common variants can arise through the effects of multiple, rarer 
variants that happen to be relatively restricted to specific haplotype 
backgrounds. In addition, common insertions or deletions can have 
functional effects, and the 1000 Genomes data will allow for analysis 
of this class of variant via an imputation framework.

The second-strongest association with smoking quantity within the 
genome in our meta-analysis was at a locus on 8p21 that received modest 
support from the TAG and ENGAGE studies (Supplementary Table 2 
and Supplementary Fig. 3; P = 5.26 × 10−7 for rs11782673). This locus 
would not remain significant after correcting for genome-wide multiple 
testing; however, it is noteworthy that the locus spans CHRNA2, another 
gene that encodes a neuronal nicotinic acetylcholine receptor subunit.

In addition to our analysis of smoking quantity, we also performed 
a genome-wide test for allelic differences between those who reported 
currently smoking or having smoked in the past versus those who said 
they had never been smokers (the ever/never phenotype; sample sizes 
are shown in Table 1 and Supplementary Table 1). This test aimed to 
identify genetic effects on the establishment of a smoking habit. No locus 
achieved genome-wide significance in this analysis, and none of the top 
15 loci showed evidence of replication (Supplementary Table 2 and 
Supplementary Fig. 4). Likewise, no consistent results emerged when 
we tested for allelic differences between those who reported smoking at 
present versus those who had smoked in the past but had stopped at the 
time of interview (Supplementary Table 2 and Supplementary Fig. 4). 
When age-adjusted, this is a rough measure of smoking cessation.

Our study identified association at some loci that, although not 
reaching genome-wide significance in our own meta-analysis, sup-
ported findings from the concurrent TAG and ENGAGE studies15,16. 
These include new loci on chromosomes 8 and 19 for smoking quan-
tity, on chromosome 11 for ever/never and on chromosome 9 for cur-
rent versus non-current smokers15,16. These findings have provided 
further new insights into the biology of smoking behavior.

URLs. ProbABEL software, http://mga.bionet.nsc.ru/~yurii/ABEL/; 
SNPTEST, IMPUTE and SNPMETA software, http://www.stats.ox.ac.
uk/~marchini/software/gwas/gwas.html; 1000 Genomes Project: 
http://www.1000genomes.org/; April 2009 release of the 1000 Genomes 
Pilot 1 data, ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/
release/2009_04/; UCSC Genome Browser, http://genome.ucsc.edu/; 
MERLIN, http://www.sph.umich.edu/csg/abecasis/merlin/; R, http://
www.r-project.org/.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Study samples. Study collections and their basic characteristics are listed in 
Table 1 and Supplementary Table 1. Subjects used in our analysis were adults 
of European descent. Summary descriptions of the collections are given below, 
together with primary citations that describe the collections fully. Data were 
used in accordance with the ethical permissions and consents relating to each 
collection.

GEMS22: The Genetic Epidemiology of Metabolic Syndrome (GEMS) 
study consists of dyslipidemic case individuals (age 20–65 years) matched 
with normolipidemic controls by sex and recruitment site, drawn from 
non-Mediterranean subjects of the GEMS study (from Finland, Switzerland, 
Canada, Australia and the United States).

CoLaus23: The Cohorte Lausannoise (CoLaus) is a single-center,  
cross-sectional population-based study, including individuals aged  
35–75 years randomly selected from the list of residents of the city of  
Lausanne, Switzerland.

GSK COPD12: This collection includes case individuals with chronic 
obstructive pulmonary disease, diagnosed according to Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) criteria, and unaffected controls 
recruited from Bergen, Norway.

GSK UPD24: This collection includes case individuals with recurrent 
major depression according to DSM-IV criteria and age- and gender-
matched unaffected controls, recruited at the Max-Planck Institute of 
Psychiatry in Munich, Germany. Subjects were also recruited at two sat-
ellite recruiting hospitals (Bezirkskrankenhaus Augsburg and Klinikum 
Ingolstadt) in the Munich area.

GSK Bipolar25: The Bipolar collection included DSM-IV-diagnosed  
bipolar case individuals and controls from subjects recruited at three  
study sites: the Institute of Psychiatry (IOP) in London, UK; the Centre for 
Addiction and Mental Health in Toronto, Canada; and the University of 
Dundee, UK.

GSK LOLIPOP26: The London Life Sciences Prospective Population 
(LOLIPOP) was a population based study including Indian Asian and 
European white men and women recruited from the lists of 58 general prac-
titioners in West London.

GSK MedStar27: The MedStar cohort included case individuals with 
acute coronary syndrome or chronic coronary artery disease (CAD) from 
Washington DC, together with unaffected controls.

Penn-CATH27: The Penn-CATH cohort was a University of Pennsylvania 
Medical Center-based angiographic study from which case individuals with 
CAD and controls with no evidence of CAD at the coronary angiography 
were derived.

EPIC28: The EPIC-Obesity cohort was a case-control cohort for obesity 
drawn from the EPIC-Norfolk cohort which included men and women of 
European ancestry aged 39–79 years recruited in Norfolk, UK.

KORA29: The Cooperative Health Research in the Region of Augsburg 
(KORA) study was an epidemiological survey of the general population living 
in the city of Augsburg, southern Germany, and two adjacent counties.

WTCCC HT30: The WTCCC-HT collection comprised severely hyperten-
sive probands ascertained from families with multiple affected members in 
the UK as part of the BRIGHT study.

WTCCC CAD, WTCCC CD and WTCCC RA30: These studies included 
individuals with CAD, Crohn’s disease and rheumatoid arthritis from the 
Wellcome Trust Case Control Consortium Study.

POPGEN study31: The Population Genetic Cohort (POPGEN) was a 
cross sectional epidemiological survey of regional German populations from 
Schleswig-Holstein, northern Germany.

SHIP study32: The Study of Health in Pomerania (SHIP) was a longitudi-
nal, population-based survey from West Pomerania, Germany. Data from the 
baseline cohort were used for this study.

VIS study33: This population cohort comprised Croatians aged 18–93  
years recruited from the villages of Vis and Komiza on the Dalmatian  
island of Vis.

ORCADES study34: The Orkney Complex Disease Study (ORCADES) was 
a family-based, cross-sectional study that sought to identify genetic factors 
influencing cardiovascular and other disease risk in the population isolate of 
the Orkney Isles in northern Scotland.

KORCULA study35: The KORCULA study included healthy volunteers aged 
18 and over from the villages of Lumbarda, Žrnovo, and Račišće on the Island 
of Korcula, Croatia.

SardiNIA study36: The SardiNIA was a population-based longitudinal cohort 
study that included male and female related individuals, aged 14 years and 
above, from a cluster of four towns in the Ogliastra province of Sardinia, Italy.

Genotyping, quality control and imputation. Supplementary Table 1 lists the 
various genotype platforms used for each cohort, the genotype calling algo-
rithms, SNP and sample quality control measures and details of the imputation 
and association analysis software used. The quality control measures from 
previous analyses of each cohort were adopted for this study and are detailed 
in the table. We used NCBI build 36 coordinates for SNP base-pair positions 
so that all the cohorts could be successfully combined.

We imputed all SNPs reported in the CEU sample in HapMap Phase II 
using various imputation algorithms13,37 (see URLs for a link to ProbABEL). 
Imputations were performed after excluding samples and SNPs that did not 
meet the study-specific quality control criteria. Genotypes were imputed for 
SNPs not present in the genome-wide arrays or for those where genotyping 
had failed to meet the quality control criteria.

Only imputed SNPs with good imputation quality were included in the 
meta-analysis. This was defined as proper_info ≥ 0.5 (a software-specific sta-
tistic for the studies analyzed with IMPUTE/SNPTEST13) or rsq-hat ≥ 0.5 
(a statistic used for studies analyzed using MACH37) and Imp_info ≥ 0.5 (a 
statistic used for studies analyzed using ProbABEL).

Derivation of smoking phenotypes. We used the categorical smoking quan-
tity levels previously defined8. The smoking quantity levels were 0 (defined 
as 1–10 CPD), 1 (11–20 CPD), 2 (21–30 CPD) and 3 (31 or more CPD). Each 
increment represents an increase in smoking quantity of 10 cigarettes per day. 
Most of the cohorts in our study have maximal CPD recorded on each sample, 
but a few collected average CPD (Supplementary Table 1). We examined the 
distributions of CPD across cohorts and found no large differences between 
those cohorts using average CPD and those using maximal CPD. The mean 
and standard deviation of the CPD measurements in each cohort are given in 
Supplementary Table 1. The ever/never and current/non-current phenotypes 
used were those collected by the individual cohorts. Not all cohorts had all 
three phenotypes (smoking quantity, ever/never and current/non-current) 
collected. Precise details of the phenotypes collected in each cohort are given 
in Supplementary Table 1. An assessment would typically be questionnaire-
based, following a structure such as the following:

Tick the option that best describes you:
- I smoke now
- I don’t smoke now. I have stopped for … years.
- I have never smoked
About how many cigarettes do you or did you smoke per day?
List the number of years you have smoked.

Statistical analysis and meta-analysis. Each cohort was analyzed separately 
for each of the three phenotypes considered. The majority of the analysis was 
carried out on the raw genotype data at the Department of Statistics, University 
of Oxford, but some cohorts (SardiNIA, VIS, KORCULA, ORCADES and SHIP) 
carried out their own analysis and submitted results for the meta-analysis. 
For the binary traits (ever/never and current/non-current) tests for additive 
genetic effects on the log-odds scale were carried out using logistic regression. 
For the categorical smoking quantity phenotype, tests for additive genetic 
effects were carried out on a linear scale using linear regression. The programs 
SNPTEST, ProbABEL and MERLIN were used on the various cohorts to fit 
these models, taking account of the genotype uncertainty at imputed SNPs. 
All tests conditioned on sex and age, and for some cohorts, other covariates 
of self-reported ancestry, country of origin or principal components analysis- 
derived covariates were included (a complete list of covariates is given in 
Supplementary Table 1). A genomic control inflation factor (λ) estimate was 
calculated for each phenotype and each cohort (Supplementary Table 3).

The meta-analysis was carried out by combining study-specific β estimates 
using a fixed effects model14, which used the inverse of the variance of the 
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study-specific β estimates to give weight to the contribution of each study. The 
variance of each cohort’s β estimate was multiplied by the genomic control λ 
estimate to correct for observed inflation38. Specifically, 
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where βi, σi
2 and λi are the β estimate, β-estimate variance and genomic con-

trol λ estimate for the ith cohort. This method is appropriate when the same 
phenotype and measurement scale are used in each cohort, and it has the 
advantage that measures of effect size (eβ is an estimate of the odds ratio of 
the risk allele) and its standard error can be calculated. We also repeated the 
analysis of smoking quantity by combining z-scores from each cohort weighted 
by their sample size38 and obtained almost identical results. All meta-analysis 
was carried out using the SNPMETA program (see URLs). After performing 
each meta-analysis, the overall λ estimate for each phenotype was 1.0145 for 
smoking quantity, 1.002 for ever/never and 0.998 for current/non-current. 
For each SNP, we also calculated a P value for the heterogeneity across  
the studies38.

SNP selection for replication. In collaboration with two other groups carrying 
out similar meta-analyses of smoking related traits (ENGAGE15 and TAG16), 
we agreed to an in silico replication strategy in which for each phenotype 
(smoking quantity, ever/never, current/non-current) each group would select 
15 regions of the genome showing evidence for association, and summary 
data (P values, β estimate, β-estimate variances, sample sizes, genomic con-
trol λ estimates and sample sizes) would be shared across groups to facilitate 
replication. We selected the top 15 regions for each phenotype on the basis 
of the P values we obtained in our own meta-analysis. We excluded regions 
in which only a small number of cohorts contributed to the study because 
the information measure at the SNPs in the excluded cohorts were below 
our thresholds. We also excluded regions where the heterogeneity between 
the studies was high. Each selected region consisted of several SNPs showing 
evidence of association in our meta-analysis with P values below 1 × 10−5. 
For each of the three phenotypes, the results from all the cohorts in all three 
concurrent studies were combined together using the same genomic-control–
corrected inverse-variance meta-analysis method described above. A full list of 
the selected regions and the summary information from all three phenotypes 
is given in Supplementary Table 2.

1000 Genomes imputation analysis. We used 108 estimated CEU haplotypes 
from the April 2009 release of the 1000 Genomes Pilot 1 data to carry out 
our fine-mapping experiments at the 15q25 locus (see URLs for a link to 
the data source). We used these haplotypes to carry out imputation in the 
interval 76.4–77.0 Mb on chromosome 15 in 12 of the cohorts (GSK-Bipolar, 
GSK-UPD, GSK-COPD, KORA, POPGEN, Lausanne, GSK-LOLIPOP, GSK-
GEMS, MedStar, SHIP, WTCCC-CAD and WTCCC-HT) using the program 
IMPUTE13. This release contains 2,189 SNPs in this interval, compared to 437 
SNPs in release 22 of the HapMap data. Meta-analysis of the imputed data was 
then carried out in the same way as described above. An important techni-
cal detail when carrying out imputation using the 1000 Genomes haplotype 
data is how to align it with the genotype data from genome-wide studies. The 

program IMPUTE aligns SNPs between the haplotype and genotype database 
on the basis of base-pair position (rather than using SNP identifiers such as rs 
identities) so that as long as the same coordinate system is used for both the 
haplotype and genotype data, the alignment is automatic.

Conditional analysis and modeling. The analysis conditional upon the SNPs 
was carried out using all of the centrally analyzed cohorts (Bipolar, UPD, 
COPD, KORA, POPGEN, Lausanne, LOLIPOP, GEMS, MEDSTAR, SHIP, 
WTCCC-CAD and WTCCC-HT). At the SNP being conditioned upon, we 
used expected genotype counts, as this allowed us to combine data from 
cohorts which had imputed the SNP and cohorts which had genotyped the 
SNP. These expected counts were included in the baseline null model as an 
additional covariate, along with the other covariates such as age, sex and cov-
ariates coding for population structure. The same method was used when 
conditioning upon two SNPs. The model selection analysis of the two pairs of 
SNPs in the 15q25 region was carried out using the expected genotype counts. 
Analysis was carried out using the R statistical package.
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