This report has goseq results for 120 minute glucose when:

  1. Genes with FDR < 0.1 marked as DE
  2. Genes from above list with positive effect marked as differentially expressed
  3. Genes from above list with negative effect marked as differentially expressed

This report was generated on June 18 2015

Goseq results also saved in csv files located on snowwhite in directory: /net/snowwhite/home/beckandy/tissue/datafreeze4/goseq/jun3/12junReps/csv

Step 1: Load in all the necessary data/libraries

library(goseq)
## Loading required package: BiasedUrn
## Loading required package: geneLenDataBase
## Loading required package: DBI
library(qvalue)

fName <- "/net/snowwhite/home/beckandy/tissue/datafreeze4/goseq/traits/peer_k01_GL120_all_genes.txt"
outFile <- "GL120"

data <- read.table(fName, as.is=T, header=T)

gene_length_file <- "/net/snowwhite/home/beckandy/tissue/datafreeze4/goseq/jun3/length.composite.gene.models.gencode.v19"
gene_lengths = read.table(gene_length_file, header=T, as.is=T);
gene_lengths$gene = sapply(gene_lengths$gene, function(x){ unlist(strsplit(x, split="[.]"))[1] });

data$gene <- sapply(data$gene, function(x){ unlist(strsplit(x, split="[.]"))[1] });

data <- merge(data, gene_lengths, by="gene", all.x=T)
data <- data[order(data$p.value),]
data$q.value <- qvalue(data$p.value)$qvalues
data$rank <- seq(1,length(data[,1]))

minRow <- 20

Step 2: Create genes vectors

The first vector simply marks the top 1000 genes as differentially expressed. The second and third vectors mark the genes with positive or negative effect in the top 1000 as differentially expressed.

genes <- as.numeric(data$q.value <= 0.1)
genesPos <- as.numeric(data$q.value <= 0.1 & data$effect > 0)
genesNeg <- as.numeric(data$q.value <= 0.1 & data$effect < 0)

names(genes) <- data$gene
names(genesPos) <- data$gene
names(genesNeg) <- data$gene

There are 917 DE genes with postive effect and 725 DE genes with negative effect.

Step 3: PWFs

pwf <- nullp(genes,"hg19","ensGene",bias.data=data$length, plot.fit=FALSE)
pwfPos=nullp(genesPos,"hg19","ensGene",bias.data=data$length, plot.fit=FALSE)
pwfNeg=nullp(genesNeg,"hg19","ensGene",bias.data=data$length, plot.fit=FALSE)

Step 4: run goseq

go <- goseq(pwf,"hg19","ensGene",test.cats=c("GO:BP"))
goPos <- goseq(pwfPos,"hg19","ensGene",test.cats=c("GO:BP"))
goNeg <- goseq(pwfNeg,"hg19","ensGene",test.cats=c("GO:BP"))

rownames(go) <- NULL
rownames(goPos) <- NULL
rownames(goNeg) <- NULL

# Fix problem with some p-values being slightly more than 1
go$over_represented_pvalue[go$over_represented_pvalue>1]=1;
go$under_represented_pvalue[go$under_represented_pvalue>1]=1;
goPos$over_represented_pvalue[goPos$over_represented_pvalue>1]=1;
goPos$under_represented_pvalue[goPos$under_represented_pvalue>1]=1;
goNeg$over_represented_pvalue[goNeg$over_represented_pvalue>1]=1;
goNeg$under_represented_pvalue[goNeg$under_represented_pvalue>1]=1;

go$q.value <- qvalue(go$over_represented_pvalue)$qvalues
goPos$q.value=qvalue(goPos$over_represented_pvalue)$qvalues
goNeg$q.value=qvalue(goNeg$over_represented_pvalue)$qvalues

go$q.value2 <- qvalue(go$under_represented_pvalue)$qvalues
goPos$q.value2=qvalue(goPos$under_represented_pvalue)$qvalues
goNeg$q.value2=qvalue(goNeg$under_represented_pvalue)$qvalues

Top 1000 Results

Over enriched categories (2)

rowN <- max(minRow, sum(go$q.value<=0.05))
cat(kable(go[1:rowN,c("category","term","numInCat","numDEInCat","q.value")],format="html"));
category term numInCat numDEInCat q.value
GO:0044267 cellular protein metabolic process 3491 402 0.0002147
GO:0019538 protein metabolic process 4128 448 0.0343544
GO:0032268 regulation of cellular protein metabolic process 1414 174 0.0693627
GO:0016310 phosphorylation 1655 200 0.0693627
GO:0006464 cellular protein modification process 2739 310 0.0788007
GO:0036211 protein modification process 2739 310 0.0788007
GO:0048522 positive regulation of cellular process 3307 361 0.0878920
GO:0043412 macromolecule modification 2854 319 0.0966725
GO:0048518 positive regulation of biological process 3684 396 0.0966725
GO:0006413 translational initiation 167 30 0.1203598
GO:0031399 regulation of protein modification process 1110 138 0.1203598
GO:0048199 vesicle targeting, to, from or within Golgi 28 10 0.1535352
GO:0006903 vesicle targeting 39 12 0.1631607
GO:0048207 vesicle targeting, rough ER to cis-Golgi 15 7 0.2073244
GO:0048208 COPII vesicle coating 15 7 0.2073244
GO:0044802 single-organism membrane organization 638 84 0.2260232
GO:1902578 single-organism localization 426 60 0.2260232
GO:1902580 single-organism cellular localization 426 60 0.2260232
GO:0006468 protein phosphorylation 1254 151 0.2622989
GO:0045087 innate immune response 724 92 0.2622989

Under enriched (0)

go <- go[order(go$under_represented_pvalue),]
rowN <- max(minRow, sum(go$q.value2<=0.05))
cat(kable(go[1:rowN,c("category","term","numInCat","numDEInCat","q.value2")],format="html"));
category term numInCat numDEInCat q.value2
6459 GO:0042384 cilium assembly 124 3 1
6458 GO:0060271 cilium morphogenesis 154 5 1
6457 GO:0044782 cilium organization 137 4 1
6456 GO:0022604 regulation of cell morphogenesis 341 18 1
9992 GO:2000648 positive regulation of stem cell proliferation 54 0 1
6441 GO:1901136 carbohydrate derivative catabolic process 1164 86 1
6454 GO:0007224 smoothened signaling pathway 105 3 1
6446 GO:1901605 alpha-amino acid metabolic process 187 8 1
6439 GO:1901565 organonitrogen compound catabolic process 1294 97 1
6438 GO:0042454 ribonucleoside catabolic process 1037 76 1
6435 GO:0009164 nucleoside catabolic process 1046 77 1
6432 GO:0006152 purine nucleoside catabolic process 1028 76 1
6433 GO:0046130 purine ribonucleoside catabolic process 1028 76 1
8356 GO:0009247 glycolipid biosynthetic process 46 0 1
6430 GO:1901658 glycosyl compound catabolic process 1052 78 1
6449 GO:0043473 pigmentation 84 2 1
6427 GO:0000902 cell morphogenesis 993 74 1
8496 GO:0015837 amine transport 45 0 1
6455 GO:0048675 axon extension 62 1 1
6437 GO:0010769 regulation of cell morphogenesis involved in differentiation 214 11 1

Positive Effect

Over enriched categories (79)

rowN <- max(minRow, sum(goPos$q.value<=0.05))
cat(kable(goPos[1:rowN,c("category","term","numInCat","numDEInCat","q.value")],format="html"));
category term numInCat numDEInCat q.value
GO:0044260 cellular macromolecule metabolic process 6484 435 0.0000129
GO:0060255 regulation of macromolecule metabolic process 4402 318 0.0000129
GO:0043170 macromolecule metabolic process 7144 467 0.0000250
GO:0019222 regulation of metabolic process 5252 365 0.0000379
GO:0048522 positive regulation of cellular process 3307 243 0.0001252
GO:0048518 positive regulation of biological process 3684 265 0.0001252
GO:0031323 regulation of cellular metabolic process 4749 331 0.0001999
GO:0045087 innate immune response 724 72 0.0002082
GO:0002376 immune system process 1936 151 0.0002518
GO:0010556 regulation of macromolecule biosynthetic process 3214 236 0.0003816
GO:0065007 biological regulation 8481 530 0.0005167
GO:0050794 regulation of cellular process 7722 490 0.0006522
GO:0009889 regulation of biosynthetic process 3367 243 0.0010283
GO:0010468 regulation of gene expression 3465 249 0.0011375
GO:0031326 regulation of cellular biosynthetic process 3340 241 0.0011375
GO:0006903 vesicle targeting 39 12 0.0012941
GO:0006950 response to stress 2909 208 0.0015023
GO:0050789 regulation of biological process 8097 507 0.0016016
GO:0048199 vesicle targeting, to, from or within Golgi 28 10 0.0016690
GO:0044267 cellular protein metabolic process 3491 248 0.0020628
GO:0002764 immune response-regulating signaling pathway 428 48 0.0020628
GO:0008150 biological_process 13154 745 0.0023073
GO:0032268 regulation of cellular protein metabolic process 1414 117 0.0023073
GO:0006955 immune response 1137 93 0.0034151
GO:0010467 gene expression 4322 291 0.0038350
GO:0002757 immune response-activating signal transduction 333 39 0.0038350
GO:0006464 cellular protein modification process 2739 205 0.0041514
GO:0036211 protein modification process 2739 205 0.0041514
GO:0050778 positive regulation of immune response 441 46 0.0044092
GO:0006901 vesicle coating 38 11 0.0045486
GO:0038093 Fc receptor signaling pathway 209 29 0.0058793
GO:0043412 macromolecule modification 2854 210 0.0059080
GO:2000112 regulation of cellular macromolecule biosynthetic process 3129 224 0.0059321
GO:1902591 single-organism membrane budding 34 10 0.0059321
GO:0048207 vesicle targeting, rough ER to cis-Golgi 15 7 0.0059321
GO:0048208 COPII vesicle coating 15 7 0.0059321
GO:0002253 activation of immune response 373 41 0.0060147
GO:0042108 positive regulation of cytokine biosynthetic process 48 11 0.0076108
GO:0006952 defense response 1178 93 0.0080318
GO:0071214 cellular response to abiotic stimulus 208 27 0.0080666
GO:0051246 regulation of protein metabolic process 1748 134 0.0081887
GO:0009059 macromolecule biosynthetic process 4025 271 0.0115587
GO:0051171 regulation of nitrogen compound metabolic process 3754 260 0.0138111
GO:0090304 nucleic acid metabolic process 4166 277 0.0159986
GO:0019538 protein metabolic process 4128 276 0.0172218
GO:0009893 positive regulation of metabolic process 2104 155 0.0205273
GO:0010605 negative regulation of macromolecule metabolic process 1458 114 0.0214195
GO:0048519 negative regulation of biological process 3238 222 0.0226371
GO:0090114 COPII-coated vesicle budding 19 7 0.0230560
GO:0006351 transcription, DNA-templated 2952 208 0.0230659
GO:0008104 protein localization 1760 132 0.0246415
GO:0050776 regulation of immune response 666 59 0.0246415
GO:0031325 positive regulation of cellular metabolic process 1991 147 0.0257020
GO:0001775 cell activation 767 65 0.0261281
GO:0009892 negative regulation of metabolic process 1582 121 0.0261281
GO:0048523 negative regulation of cellular process 2965 205 0.0316824
GO:0080090 regulation of primary metabolic process 4733 312 0.0338352
GO:0002433 immune response-regulating cell surface receptor signaling pathway involved in phagocytosis 69 13 0.0338352
GO:0038094 Fc-gamma receptor signaling pathway 69 13 0.0338352
GO:0038096 Fc-gamma receptor signaling pathway involved in phagocytosis 69 13 0.0338352
GO:0006325 chromatin organization 563 54 0.0344872
GO:0002768 immune response-regulating cell surface receptor signaling pathway 312 34 0.0344872
GO:0051252 regulation of RNA metabolic process 2966 207 0.0364348
GO:0006366 transcription from RNA polymerase II promoter 1447 112 0.0364348
GO:0001774 microglial cell activation 11 5 0.0364348
GO:0051276 chromosome organization 738 66 0.0364348
GO:0010604 positive regulation of macromolecule metabolic process 1913 141 0.0364348
GO:0006900 membrane budding 53 11 0.0370601
GO:0002684 positive regulation of immune system process 610 53 0.0370601
GO:0016568 chromatin modification 502 50 0.0370601
GO:0034645 cellular macromolecule biosynthetic process 3920 260 0.0371043
GO:0031399 regulation of protein modification process 1110 89 0.0381845
GO:0007049 cell cycle 1450 112 0.0408566
GO:0050671 positive regulation of lymphocyte proliferation 97 14 0.0431583
GO:0019219 regulation of nucleobase-containing compound metabolic process 3668 250 0.0432788
GO:0002431 Fc receptor mediated stimulatory signaling pathway 73 13 0.0432788
GO:0032946 positive regulation of mononuclear cell proliferation 98 14 0.0479142
GO:0008283 cell proliferation 1495 110 0.0489777
GO:0002682 regulation of immune system process 997 78 0.0498335

Under enriched (3)

goPos <- goPos[order(goPos$under_represented_pvalue),]
rowN <- max(minRow, sum(goPos$q.value2<=0.05))
cat(kable(goPos[1:rowN,c("category","term","numInCat","numDEInCat","q.value2")],format="html"));
category term numInCat numDEInCat q.value2
5240 GO:1901564 organonitrogen compound metabolic process 2217 79 0.0211678
5239 GO:0044281 small molecule metabolic process 2955 114 0.0211678
5238 Other NA 1443 41 0.0344384
9491 GO:1901605 alpha-amino acid metabolic process 187 0 0.0998875
5237 GO:0006520 cellular amino acid metabolic process 416 6 0.1141606
5236 GO:1901565 organonitrogen compound catabolic process 1294 46 0.2005667
5231 GO:0042278 purine nucleoside metabolic process 1198 43 0.4480852
5230 GO:0046128 purine ribonucleoside metabolic process 1195 43 0.4480852
5234 GO:0046034 ATP metabolic process 442 10 0.4480852
5233 GO:0009126 purine nucleoside monophosphate metabolic process 467 11 0.4480852
5232 GO:0009167 purine ribonucleoside monophosphate metabolic process 466 11 0.4480852
5229 GO:0009199 ribonucleoside triphosphate metabolic process 1132 41 0.4480852
5228 GO:0009205 purine ribonucleoside triphosphate metabolic process 1126 41 0.4822383
5227 GO:0072521 purine-containing compound metabolic process 1346 51 0.4840839
5226 GO:0009116 nucleoside metabolic process 1238 46 0.4840839
5225 GO:1901136 carbohydrate derivative catabolic process 1164 44 0.4840839
5224 GO:0009150 purine ribonucleotide metabolic process 1292 49 0.4840839
5223 GO:0009144 purine nucleoside triphosphate metabolic process 1132 42 0.4840839
5220 GO:1901135 carbohydrate derivative metabolic process 1917 79 0.4840839
5222 GO:1901657 glycosyl compound metabolic process 1252 47 0.4840839

Negative Effect

Over enriched categories (20)

category term numInCat numDEInCat q.value
GO:0006414 translational elongation 121 20 0.0001912
GO:0022904 respiratory electron transport chain 105 18 0.0001912
GO:0022900 electron transport chain 106 18 0.0001912
GO:0044281 small molecule metabolic process 2955 157 0.0006293
GO:0045333 cellular respiration 158 21 0.0006822
GO:0006415 translational termination 95 16 0.0006822
GO:0006091 generation of precursor metabolites and energy 394 36 0.0009270
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 107 16 0.0027075
GO:0006613 cotranslational protein targeting to membrane 109 16 0.0027075
GO:0055114 oxidation-reduction process 896 61 0.0027075
GO:0045047 protein targeting to ER 110 16 0.0027075
GO:0015980 energy derivation by oxidation of organic compounds 319 30 0.0027075
GO:0072599 establishment of protein localization to endoplasmic reticulum 111 16 0.0027595
GO:0006413 translational initiation 167 20 0.0031130
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 118 16 0.0055911
GO:0006612 protein targeting to membrane 171 19 0.0138745
GO:0070972 protein localization to endoplasmic reticulum 128 16 0.0138745
GO:0019083 viral transcription 158 18 0.0144980
GO:0019080 viral gene expression 168 18 0.0309075
GO:1902600 hydrogen ion transmembrane transport 84 12 0.0309075

Under enriched (23)

category term numInCat numDEInCat q.value2
4390 GO:0006351 transcription, DNA-templated 2952 64 0.0005987
4389 GO:0051252 regulation of RNA metabolic process 2966 65 0.0005987
4388 GO:0051171 regulation of nitrogen compound metabolic process 3754 90 0.0005987
4387 GO:0090304 nucleic acid metabolic process 4166 104 0.0005987
4386 GO:0016070 RNA metabolic process 3693 89 0.0005987
4385 GO:0010556 regulation of macromolecule biosynthetic process 3214 74 0.0005987
4384 GO:2001141 regulation of RNA biosynthetic process 2888 64 0.0005987
4383 GO:0010468 regulation of gene expression 3465 83 0.0009234
4382 GO:0006355 regulation of transcription, DNA-templated 2851 64 0.0009387
4381 GO:0019219 regulation of nucleobase-containing compound metabolic process 3668 90 0.0009387
4380 GO:0031326 regulation of cellular biosynthetic process 3340 80 0.0011916
4379 GO:0060255 regulation of macromolecule metabolic process 4402 115 0.0012924
4378 GO:2000112 regulation of cellular macromolecule biosynthetic process 3129 74 0.0014734
4377 GO:0009889 regulation of biosynthetic process 3367 82 0.0017818
4375 GO:0080090 regulation of primary metabolic process 4733 130 0.0059591
4374 GO:0010467 gene expression 4322 116 0.0059591
4373 GO:0019222 regulation of metabolic process 5252 149 0.0088257
4372 GO:0031323 regulation of cellular metabolic process 4749 132 0.0096404
4376 GO:0006397 mRNA processing 404 2 0.0180188
4371 GO:0065007 biological regulation 8481 270 0.0305537
4369 GO:0009059 macromolecule biosynthetic process 4025 111 0.0410426
4368 GO:0050794 regulation of cellular process 7722 243 0.0448999
4367 GO:0050789 regulation of biological process 8097 257 0.0448999

Final Step: csv output

write.csv(go,file=paste("csv/", outFile,"_main.csv",sep=''), row.names=FALSE)
write.csv(goPos,file=paste("csv/", outFile,"Pos.csv",sep=''), row.names=FALSE)
write.csv(goNeg,file=paste("csv/", outFile,"Neg.csv",sep=''), row.names=FALSE)