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The identification of genes contributing to complex diseases and quantitative traits requires genetic data of high
fidelity, because undetected errors and mutations can profoundly affect linkage information. The recent emphasis
on the use of the sibling-pair design eliminates or decreases the likelihood of detection of genotyping errors and
marker mutations through apparent Mendelian incompatibilities or close double recombinants. In this article, we
describe a hidden Markov method for detecting genotyping errors and mutations in multilocus linkage data.
Specifically, we calculate the posterior probability of genotyping error or mutation for each sibling-pair-marker
combination, conditional on all marker data and an assumed genotype-error rate. The method is designed for use
with sibling-pair data when parental genotypes are unavailable. Through Monte Carlo simulation, we explore the
effects of map density, marker-allele frequencies, marker position, and genotype-error rate on the accuracy of our
error-detection method. In addition, we examine the impact of genotyping errors and error detection and correction
on multipoint linkage information. We illustrate that even moderate error rates can result in substantial loss of
linkage information, given efforts to fine-map a putative disease locus. Although simulations suggest that our method
detects �50% of genotyping errors, it generally flags those errors that have the largest impact on linkage results.
For high-resolution genetic maps, removal of the errors identified by our method restores most or nearly all the
lost linkage information and can be accomplished without generating false evidence for linkage by removing
incorrectly identified errors.

Introduction

Sibling-pair designs are routinely used to map genes for
complex diseases and quantitative traits (see, e.g., Krug-
lyak and Lander 1995; Risch and Zhang 1995). The
current analytic strategy often consists of an initial ge-
nome scan based on microsatellite markers or short tan-
dem repeat polymorphisms (STRPs) at 10–20-cM den-
sity, followed by the investigation of interesting regions
with additional markers at 1–5-cM density. Because such
studies frequently require the determination of hundreds
of thousands, or even millions, of genotypes, genotyping
errors and marker mutations are inevitable. This prob-
lem is particularly troublesome for sibling-pair data,
where the chance of detecting errors and mutations
through gross violations of Mendelian inheritance or the
presence of close double recombinants is reduced, rel-
ative to that in richer pedigree structures.

Genotyping errors occur when the observed genotype
does not correspond to the true underlying genotype
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because of laboratory error or incorrect data interpre-
tation or entry. In general, the spectrum of genotyping
errors depends on the type of marker and method of
analysis but for STRPs might include the reading of a
heterozygote as a homozygote or the missizing of either
allele by a single repeat unit. Marker mutations, which
are relatively frequent for STRPs (Weber and Wong
1993), can mimic genotyping errors. Both errors and
mutations can have the unfortunate consequence of in-
troducing spurious recombinants or negating true re-
combinants. In high-resolution multipoint maps, where
markers are close together and recombination is rare,
errors and mutations are much more likely to appear
as apparent but false double recombinants (Buetow
1991). Such high-resolution maps are often employed
in regions of greatest interest.

Methods of linkage analysis based on the sibling-pair
design generally examine the genome for regions of ex-
cess (or decreased) marker allele sharing, either identical
by descent (IBD) or identical by state (IBS), between
affected (or discordant) sibling pairs. Undetected ge-
notyping errors and marker mutations often lead to a
reduced level of allele sharing IBS and, consequently, to
a reduced estimated level of allele sharing IBD between
sibling pairs. For affected sibling-pair (ASP) designs, the
net effect is to diminish evidence for linkage. Moreover,
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as additional markers are typed in regions of potential
linkage, genotyping errors and marker mutations may
decrease or even reverse the expected gain in linkage
information (Feakes et al. 1999). For discordant sibling-
pair designs, undetected errors and mutations may lead
to false evidence for linkage or may simply add noise
to existing linkage signals. Methods of error and mu-
tation detection thus have potential to be useful tools
in evaluating evidence for linkage in sibling-pair studies.

For sibling-pair data, comparison of single-point and
multipoint results and repeat multipoint analyses drop-
ping individual markers allow some assessment of data
quality. In practice, however, these approaches identify
problem markers, not problem genotypes. Much of the
literature to date regarding genotyping error and mu-
tation focuses on the detection of conspicuous inheri-
tance inconsistencies (Lathrop et al. 1983; Ott 1993;
Stringham and Boehnke 1996; O’Connell and Weeks
1998). Most methods require nuclear-family or ex-
tended-pedigree data (Brzustowicz et al. 1993; Ehm and
Kimmel 1995; Ehm et al. 1996) for successful imple-
mentation. With the exception of a new error-checking
module implemented in ASPEX 2.2, few of these meth-
ods capitalize on multipoint data. Thus, there is a clear
need for a multipoint method of error and mutation
detection in sibling-pair genotype data.

In this article, we propose a method to identify likely
genotyping errors and marker mutations for a sibling
pair in the context of multipoint mapping (Douglas et
al. 1998). Specifically, we use a hidden Markov model
to calculate the posterior probability of genotyping er-
ror or mutation for each sibling-pair-marker combi-
nation, given all the available marker data, an assumed
genotype-error rate, and a known genetic map. This
method is designed to detect genotyping errors and mu-
tations in sibling-pair data when parental data are una-
vailable. Through Monte Carlo simulation, we inves-
tigate the effects of map density, marker-allele fre-
quencies, marker position, and genotype-error rate on
the accuracy of our method. We also examine the impact
of genotyping errors and error correction on linkage
information in multipoint mapping. We demonstrate
that, although our method flags fewer than half of the
genotyping errors and mutations, it flags exactly those
errors that have the largest impact on multipoint linkage
results. The result is substantial recovery of linkage in-
formation that otherwise would be lost. Moreover, so
long as we select a small false-positive rate (on the order
of .001–.0001), our method does not generate false ev-
idence for linkage by removing incorrectly identified
errors.

Methods

Here we calculate the posterior probability of genotyp-
ing error or mutation for each sibling-pair-marker com-

bination, conditional on all marker data and an assumed
genotype-error model and rate. The subset of combi-
nations for which this posterior error probability is high
may be considered for exclusion, review, or retyping.

Data, Notation, and Assumptions

Assume that genotype data are observed for a sibling
pair across a fixed map of M genetic markers. At marker
k for sibling j, let xkj be the observed genotype and gkj

be the true genotype if no mutation occurred. Let
and be the observed and trueX = (x ,x ) G = (g ,g )k k1 k2 k k1 k2

genotype vectors for the sibling pair at marker k and
be the observed genotype data for allX = (X , ) ,X )1 M

M markers. Let if the pair share their allele ati = 1kp

marker k from parent p (father or mother) IBD and 0
otherwise. Let and vkp be the sex-specific re-I = (i ,i )k kf km

combination fraction between markers k and . As-k � 1
sume that the markers are autosomal, codominant, and
linked, with known allele frequencies, map order, and
intermarker distances. Further, assume Hardy-Weinberg
and linkage equilibrium and no crossover interference.

To model genotyping error, we assume that x = gkj kj

(with certainty and not at random) with probability
and that xkj is chosen at random in accord with1 � e

population genotype frequencies with probability e. Al-
though this model is not very realistic in practice, it
simplifies the calculation of the posterior error proba-
bility. More important, the success of our method under
this relatively simple error model suggests that the in-
corporation of more complex error models is unneces-
sary. Here the assumed genotype-error rate e can be set
to some fixed positive number or might be estimated by
duplicate-genotyping a subset of the data. Note that, for
most markers, the rate of genotyping error largely de-
termines e; the rate of mutation is relatively insignificant
by comparison.

Posterior Probability of Incorrect Genotype

For each marker k, we calculate the posterior prob-
ability that the observed marker ge-P (G ( X d X; e)k k

notype of at least one sibling is incorrect, given all
marker data for the sibling pair. Here and in what fol-
lows, by “incorrect” we mean different from the true,
underlying genotype if no mutation occurred. To cal-
culate this probability, we write

P(G = X ,X; e)k kP(G ( X d X; e) = 1 � .k k P(X; e)

By the assumption of no interference,
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Table 1

Conditional Probabilities for Sibling-Pair Ordered Genotypes

GENOTYPE P(X d I ; e = 0)k k

X1 X2
I = (0,0)k or (1,0)I = (0,1)k I = (1,1)k

ii ii 4pi
3pi

2pi

ii ij 2 3p pi j
2p pi j 0

ii jj 2 2p pi j 0 0
ii jk 2 2p p pi j k 0 0
ij ij 4 2 2p pi j p p (p � p )i j i j 2p pi j

ij ik 4 2p p pi j k p p pi j k 0
ij kl 4p p p pi j k l 0 0

NOTE.—X1 and X2 are the observed genotypes for the sibling
pair at a single genetic marker; i, j, k, and l are distinct alleles
with frequencies pi, pj, pk, and pl.

P(G = X ,X; e)k k

= L (I ; e)P(G = X d I ; e)R (I ; e) .� k k k k k k k
Ik

Here is the joint proba-L (I ; e) = P(X , ) ,X ,I ; e)k k 1 k�1 k

bility of the data for markers 1 to and the IBDk � 1
vector Ik at marker k, and R (I ; e) = P(X , ) ,X dk k k�1 M

is the conditional probability of the data for mark-I ; e)k

ers to M given the IBD vector Ik.k � 1
Under the assumption of no interference, the un-

known IBD vectors form a hidden MarkovI , ) ,I1 M

chain. Hence, and are easily deter-L (I ; e) R (I ; e)k k k k

mined by the forward recurrence

L (I ; e) = L (I ; e)P(X d I ; e)P(I d I )�k�1 k�1 k k k k k�1 k
Ik

and the backward recurrence

R (I ; e) = R (I ; e)P(X d I ; e)P(I d I ) ,�k k k�1 k�1 k�1 k�1 k�1 k
Ik�1

following Baum (1972). By definition, , be-1L (I ; e) =1 i 4

cause all four IBD vectors are, a priori, equally likely,
and by convention, . Note that the finalR (I ; e) = 1M M

summation

L (I ; e) = L (I ; e)P(X d I ; e)�M�1 M�1 M M M M
IM

yields . Furthermore, allowing for sex-specific re-P(X; e)
combination fractions,

P(I d I ) = P(I = j d I = i)k�1 k k�1 k

= P(i = j d i = i )P(i = j d i = i )k�1,m m k,m m k�1,f f k,f f

is the probability of moving from IBD vector i = (i ,i )m f

at marker k to IBD vector at marker . Forj = (j ,j ) k � 1m f

example, for full siblings, P(i = j d i = i ) = (1 �k�1,p p kp p

, where .d j �i d 1�d j �i d 2 2p p p pW ) W W = v � (1 � v )kp kp kp kp kp

According to our error model, genotyping errors and
mutations result in siblings with independent observed
genotypes, Xk1 and Xk2. Hence,

2P(X d I ; e) = (1 � e) P(X d I ; e = 0)k k k k

2 [ ]� [1 � (1 � e) ]P X d I = (0,0); ek k

2=(1 � e) P(X d I ; e = 0)k k

2� [1 � (1 � e) ]P(X )P(X ) .k1 k2

Here, under the assumption of Hardy-Weinberg equilib-
rium, can be easily calculated from marker-alleleP (X )kj

frequencies. Moreover, each sibling’s genotype is correct
for certain with probability or randomly chosen(1 � e)

with probability e. The genotype of sibling j is correct
at random with probability so thateP (X )kj

P(G = X d I ; e)k k k

[ ][ ]= P(G d I ; e = 0) 1 � e � eP(X ) 1 � e � eP(X ) .k k k1 k2

The derivation of this formula depends on the inde-
pendence of Xk1 and Xk2 when either is resampled. Of
course, the genotypes Gk1 and Gk2 are constrained by
the assumed IBD relation. The conditional probability
of the observed or true genotypes at marker k given the
IBD vector of the pair and no error or mutation,

or , is easily calculatedP(X d I ; e = 0) P(G d I ; e = 0)k k k k

from marker-allele frequencies (Thompson 1975) (table
1).

Classifying Likely Errors and Mutations

A high posterior error probability is indicative of a
likely genotyping error or mutation. Thus, the natural
decision is to remove, rescore, and/or retype a pair of
genotypes at a marker when the posterior error prob-
ability is above a certain cutoff con-P(G ( X d X; e)k k

stant, c. Calculating the cutoff constant c can be accom-
plished in the usual decision-analysis framework.
Specifically, we choose c to be as small as possible in
order to maximize the true-positive rate—that is, the
frequency with which errors are detected when they are
present—while at the same time guarding against a high
false-positive rate—that is, the frequency with which er-
rors are detected when none are present. In the formal
statistical setting, this is the equivalent of choosing c to
minimize the type II error rate—that is, the frequency
with which errors are not detected when they are pre-
sent—while simultaneously guarding against a high type
I error rate (table 2).

We initially proposed to calculate the posterior error
probability for each sibling-pair-marker combination,
rank them in order of decreasing magnitude, and classify



1290 Am. J. Hum. Genet. 66:1287–1297, 2000

Table 2

Classification of the Posterior Error Probability

Marker k Status a( )P G ( X dX; e 1 ck k
a( )P G ( X dX; e �ck k

Error True positive False negative (type II error)
No error False positive (type I error) True negative

a c is the cutoff constant determined by the prescribed type I error rate.

as likely genotyping errors and mutations combinations
with posterior error probabilities exceeding the cutoff
constant c (Douglas et al. 1998). Preliminary simulation
work, however, demonstrated that the cutoff constant c
for the posterior error probability depends strongly on
the map density and the assumed genotype-error rate
and, to a lesser extent, on the position of the marker
and its allele frequencies. Thus, applying a fixed cutoff
constant c is inappropriate as a general strategy. Instead,
c should depend on the marker k in question in addition
to the overall map and prior error rate.

On the basis of this observation, we have chosen to
use Monte Carlo simulation to determine the appropri-
ate cutoff constant, ck, for each marker k. Specifically,
we simulate marker data for a large number of sibling
pairs for the observed marker map. We simulate no error
at marker k, but at all other markers we simulate ran-
dom genotype error with probability e. We then calculate
the posterior error probability at marker k for each rep-
licate sibling pair. The resulting posterior error proba-
bilities form an empirical distribution for marker k under
the null hypothesis of no genotyping error or mutation
for either sibling at marker k. From the empirical dis-
tribution, the cutoff constant, ck, is determined by use
of the prescribed size of the test (or false-positive rate).
We repeat this process for each marker k. Genotypes
with observed posterior error probabilities exceeding ck

are classified as likely genotyping errors or marker mu-
tations. We choose a small false-positive rate (�.001) to
keep the overall false-positive rate low and so to avoid
falsely generating evidence for linkage by removing cor-
rect genotypes.

Assessment of Method by Computer Simulation

To evaluate the true-positive rate of our method as
function of map density, marker-allele frequencies,
marker position, and assumed genotype-error model and
rate, we performed computer simulations. For each sim-
ulation, we assumed a 100-cM autosome with codom-
inant markers equally spaced at 1-, 2-, 3-, 5-, or 10-cM
intervals. Anticipating that genome scans might soon be
performed with dense arrays of biallelic markers or sin-
gle-nucleotide polymorphisms (SNPs), we also per-
formed a limited number of simulations with 100 bial-
lelic markers equally spaced at 0.1- or 0.01-cM intervals.
We applied Kosambi’s (1944) mapping function to relate

map distance and recombination fraction. For all sim-
ulations, we used a sex-averaged recombination fraction
and assumed both Hardy-Weinberg and linkage equilib-
rium. In most cases, we simulated markers with four
equally frequent alleles (heterozygosity ). To ex-H = .75
amine the impact of marker-allele frequencies on our
ability to detect errors, we also considered markers with
heterozygosity of but seven (.40, .20, .20, .05,H ≈ .75
.05, .05, and .05) or eight (.32, .30, .20, .10, .05, .02,
.005, and .005) alleles, as well as markers with 2 (H =

) or 10 ( ) equally frequent alleles. For SNP.50 H = .90
simulations, we simulated markers with two equally fre-
quent alleles ( ) or nonequally frequent allelesH = .50
(.90, .10; ). We simulated genotyping errors us-H = .18
ing error rates of 0.1%–3%. These error rates are con-
sistent with estimated mutation rates of for�30–8 # 10
STRPs (Weber and Wong 1993) and the levels of ge-
notyping error commonly reported for linkage data (La-
throp et al. 1983; Buetow 1991; Dracopoli et al. 1991;
Brzustowicz et al. 1993; Ghosh et al. 1997).

To estimate the false-positive rate—that is, the fre-
quency with which our method suggested an error when
none was present—we generated marker data for
100,000 sibling pairs with no genotyping error at
marker k and random error at all other markers. We
calculated posterior error probabilities for each replicate
at marker k and used them to construct the empirical
distribution. On the basis of these simulated data, we
noted the posterior error probability or equivalently, the
cutoff constant ck that yielded false-positive rates of
.0001, .0005, .001, .005, and .01. To estimate the true-
positive rate, we then generated marker data for 10,000
sibling pairs with genotyping error at marker k for at
least one member of the pair, again introducing random
error at all other markers. The errors were introduced
by one of the four mechanisms described below. Again,
we calculated posterior error probabilities for each rep-
licate sibling pair. We estimated the true-positive rate
corresponding to each false-positive rate by computing
the fraction of those genotyping errors with posterior
error probabilities exceeding the appropriate cutoff con-
stant ck determined under the assumption of no error.
We generally estimated the true-positive and false-pos-
itive rates for a marker k at either the middle of the map
or at the end of the map. In a subset of our simulations,
we considered several intermediate positions. Also note
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Table 3

Posterior Error–Rate Cutoffs for Fixed False-Positive Rates

MARKER SPACING

AND

FALSE-POSITIVE RATE

PRIOR ERROR RATE e

.1% .5% 1% 2% 3%

l cM:
.0001 .409 .856 .893 .965 .955
.0005 .207 .627 .763 .885 .899
.001 .110 .438 .582 .767 .789

2 cM:
.0001 .255 .631 .801 .874 .912
.0005 .157 .463 .658 .777 .840
.001 .115 .396 .539 .694 .765

3 cM:
.0001 .161 .522 .731 .882 .886
.0005 .128 .418 .589 .750 .785
.001 .075 .309 .486 .663 .702

NOTE.—Assume a 100-cM map and markers with four
equally frequent alleles. Data for 100,000 sibling pairs were
simulated without genotype error or mutation at the marker
in the middle of the map; random genotype errors were in-
troduced for all other markers with probability equal to the
analysis error rate e.

that we used the same prior genotype-error rate for error
detection as we used to simulate our data. To examine
the impact of under- or overestimation of the genotype-
error rate e, we simulated a few data sets under different
rates.

To test the accuracy of our error-detection method,
we simulated four different genotyping error and mu-
tation mechanisms: (i) random genotype error, (ii) ran-
dom allele error, (iii) heterozygote-to-homozygote ge-
notype error, and (iv) homozygote-to-heterozygote
genotype error. Under random genotype error, new gen-
otypes were assigned at random in accord with marker-
allele frequencies and Hardy-Weinberg equilibrium; this
is the error model that we use in our error-detection
method. Under random allele error, one allele in a ge-
notype was randomly reassigned to another allele in ac-
cord with marker allele frequencies. For heterozygote-
to-homozygote genotype error, the error was introduced
by randomly replacing one of the alleles present in the
heterozygous genotype by the other allele. In practice,
PCR amplification failure might account for errors of
this kind. For homozyote-to-heterozygote genotype er-
ror, homozygous genotypes were randomly replaced by
adjacent-allele heterozygous genotypes. These types of
errors might arise from the presence of stutter bands
after PCR amplification.

Application to Simulated Linkage Data

To examine the impact of genotyping errors and mu-
tations on the results of multipoint linkage analyses and
to assess the value of our method for correction of those
errors, we simulated marker data under an additive dis-
ease model (Risch 1990) for samples of 400 sibling pairs.
We generated data assuming a recurrence-risk ratio of

, 1.25, 2, or 4. In each simulation, the disease locusl = 1
was centered between two markers at the middle of the
map. For these simulations, we assumed a 100-cM au-
tosome with codominant markers equally spaced at 1-,
2-, 5-, or 10-cM intervals and introduced genotyping
errors across the map according to either the random
genotype- or random allele-error mechanism. For each
simulation, we generated and separately analyzed the
sample without errors, the sample with errors, and the
sample with likely errors removed. We remaximized the
LOD score, allowing the maximization position to vary
in each case. Note that we removed genotypes at marker
k when the posterior error probability P (G ( X dk k

for a sibling pair exceeded the cutoff constant ck;X; e)
genotypes for the pair at all other markers were kept in
the analysis.

Results

Posterior Error Probability

Table 3 illustrates the strong dependence of the esti-
mated posterior error probabilities on the prior geno-
type-error rate e. As expected, higher prior-error rates
require correspondingly higher posterior error cutoffs to
maintain a fixed false-positive rate. For example, at 1-
cM marker spacing and a false-positive rate of .001,
likely errors and mutations are identified by choosing
posterior error probabilities exceeding .110 or .582, de-
pending on the prior error rate e, 0.1% or 1.0%, re-
spectively. More important, the prior -error rate e does
not noticeably alter the true-positive rate (data not
shown).

Note that the estimated posterior error cutoffs also
vary substantially according to the map density and,
naturally, the desired false-positive rate (table 3). In gen-
eral, dense maps require larger posterior error proba-
bilities than do less dense maps. Though the posterior
error probabilities vary predictably in direction accord-
ing to the false-positive rate, the magnitude of change
is strongly influenced by the desired false-positive rate.
For example, at 1-cM marker spacing and prior error
rate , flagging sibling-pair-marker combinationse = .005
with posterior error probabilities 1.856 will give an es-
timated false-positive rate of .0001, whereas flagging
those combinations with probabilities 1.438 will give an
estimated false-positive rate of .001. The posterior error
probabilities are also a function of marker position; this
is particularly true for markers at the ends of the map
(data not shown). These results reinforce the inappro-
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Figure 1 True-positive rate versus false-positive rate, assuming a genotype-error rate of .01, markers with four equally frequent alleles,
and a 100-cM map with markers equally spaced at 1-, 2-, 3-, or 5-cM intervals. True-positive rates were based on introduction of random
genotype error for at least one member of the sibling pair at the marker in the middle of the map.

priateness of applying a common posterior error cutoff
when classifying likely errors and mutations.

Accuracy of Error Detection

For the cases considered, simulation results suggest
that our method detects only 5%–50% of genotyping
errors, depending on map density, marker position,
marker-allele frequencies, the desired false-positive rate,
and the true underlying error mechanism. Figure 1 il-
lustrates the effect of map density on correctly detecting
a genotyping error for a given false-positive rate, assum-
ing a genotype-error rate and markers with foure = .01
equally frequent alleles. In this case, random genotype
errors were introduced at the same rate of .01. Not sur-
prisingly, the true-positive rate increases as the distance
between adjacent markers decreases. For the true ge-
notyping error rates considered, our method detects ap-
proximately twice as many errors in a 1-cM map than
in a 5-cM map, depending on the false-positive rate. At
lower levels of map resolution—for example, at 10-cM
marker spacing—our method detected a maximum of
15% of errors for false-positive rates !.01 (data not
shown).

Increasing marker heterozygosity by simulating mark-
ers (equally spaced at 1-cM intervals) with 10 equally
frequent alleles consistently gave true-positive rates
150% for false-positive rates of .001–.01 (data not

shown). Decreasing marker heterozygosity by simulating
markers (again equally spaced at 1-cM intervals) with
two equally frequent alleles gave true-positive rates of
20%–32% for these same false-positive rates. Fixing
marker heterozygosity at 0.75 and varying the allele fre-
quencies to allow the inclusion of rare alleles had no
appreciable impact on the true-positive rate (data not
shown).

In simulations for biallelic markers, our method de-
tected 34%–37% and 24%–33% of genotyping errors
for markers equally spaced at 0.1-cM intervals with
equally frequent and nonequally frequent (.90, .10) al-
leles, respectively. These true-positive rates correspond
to false-positive rates of .0001–.01. Increasing map den-
sity to 0.01-cM marker spacing had negligible impact
on true-positive rates. In general, our method detected
�40% of genotyping errors for false-positive rates !.01.

Figure 2 displays the impact of marker position within
the map on the true-positive rate, on the assumption of
a 1% genotype-error rate and a fixed false-positive rate
of .001. As anticipated, error detection is less accurate
for markers near the ends of the map. Markers 5–10
cM from the end of the map, however, depending on
map density (1–5 cM), display true-positive rates nearly
equivalent to those of markers in the middle of the map.
In fact, for the map densities shown, true-positive rates
for markers at the middle of the map are �1.06 times
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Figure 2 True-positive rate as a function of marker distance from the end of the map, on the assumption of a true genotype-error rate
of .01, markers with four equally frequent alleles, and a 100-cM map with markers equally spaced at 1-, 2-, 3-, or 5-cM intervals. True-positive
rates were based on introduction of random genotype error for at least one member of the sibling pair at the positioned marker. The false-
positive rate was fixed at .001.

the rates for markers 5–10 cM from the end of the map.
Note that these estimates of the true-positive rates are
based on simulating marker data for a single set of
10,000 sibling pairs, so an estimate of the sampling var-
iability was not pursued.

Table 4 gives the true-positive rates under all four
genotype error and mutation mechanisms. The power
of our method to detect errors and mutations is similar
for random genotype error and heterozygous-to-ho-
mozygous error, except at the smallest false-positive rate
of .0001. The power to detect errors is somewhat less
for random allele error and noticeably less for homo-
zygous-to-heterozygous error. Such differences in true-
positive rates can be explained and quantified in terms
of the expected reductions in allele sharing between sib-
lings resulting from these different error mechanisms (J.
A. Douglas and M. Boehnke, unpublished data).

Impact of Errors and Error Detection on Linkage
Information

The presence of genotyping errors and mutations can
substantially reduce power to detect a disease locus by
multipoint linkage analysis and sibling-pair data. Table
5 gives the proportion of the maximum LOD score re-
tained for recurrence risk ratios of 1.25, 2, and 4 in the
presence of genotyping error. Even a moderate genotype-
error rate of 1% can result in the loss of 21%–58% of

the linkage information for the situations considered.
These data were generated under random genotype er-
ror. Introducing random allele error results in a similar
loss of information; 8%–38% and 19%–60% of linkage
information is lost for error rates of 1% and 2%,
respectively.

Figure 3 shows the impact of a 1% genotype-error
rate, error identification, and data removal on results for
simulated linkage data. We generated a single replicate
data set of 400 affected sibling pairs, assuming a recur-
rence-risk ratio of . In this sample, the simula-l = 1.25
tion introduced 709 marker-typing errors. Under the as-
sumption of a false-positive rate of .001, our method
flagged 269 sibling-pair-marker combinations; of these,
233 (87%) were errors. Perhaps the most striking result
is that removing !40% of the errors restores essentially
all of the linkage information. The maximum LOD score
increases from 1.34, in the presence of errors, to 2.69
after removing the 269 likely errors, whereas the true
maximum LOD score is 2.61. More important, exclud-
ing only the 233 errors yields a maximum LOD score
of 2.49, so the inflation in linkage information as a result
of removing the 36 correct genotypes is trivial. Addi-
tional replicate data sets under both the same and dif-
ferent recurrence risk ratios ( or 4) gave qualita-l = 2
tively similar results.

The 36 (13%) sibling-pair-marker combinations in-
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Table 4

True-Positive Rate under Four Genotype Error and Mutation
Mechanisms

FALSE-
POSITIVE

RATE

TRUE-POSITIVE RATE

Random
Genotypea

Random
Alleleb HetrHomc HomrHetd

.0001 .160 .064 .012 .001

.0005 .264 .206 .244 .166

.001 .326 .251 .310 .188

.005 .400 .317 .387 .223

.01 .419 .338 .411 .232

NOTE.—Assume markers with four equally-frequent alleles
equally spaced at 1-cM intervals in a 100-cM map. True-positive
rates were estimated by simulating marker data for 10,000 sibling
pairs and by introducing genotype error for at least one member
of the sibling pair at the marker in the middle of the map ac-
cording to the specified error mechanism. Under the same error
mechanism, additional genotype errors were introduced for all
other markers with probability equal to the analysis error rate

.e = .01
a Random genotype error.
b Random allele error.
c Heterozygous genotype changed to incorrect homozygous

genotype.
d Homozygous genotype changed to incorrect heterozygous

genotype.

Table 5

Impact of Error and Error Detection on Proportion of Maximum
LOD Score Retained and Restored

MARKER SPACING

AND ERROR RATE

RECURRENCE-RISK RATIO

l = 1.25 l = 2 l = 4

Before After Before After Before After

1 cM:
.5% .72 .98 .86 .98 .89 .98
1.0% .47 .89 .73 .95 .79 .96
Expected LODa 2.17 11.06 24.91

2 cM:
.5% .72 .90 .84 .93 .89 .95
1.0% .42 .70 .72 .86 .78 .88
Expected LODa 2.13 10.46 23.56

5 cM:
.5% .70 .87 .86 .93 .90 .95
1.0% .47 .71 .73 .83 .79 .87
Expected LODa 1.77 9.22 21.25

10 cM:
.5% .72 .84 .85 .90 .90 .93
1.0% .47 .62 .71 .79 .77 .85
Expected LODa 1.42 7.69 16.70

NOTE.—Data were simulated for 400 sibling pairs under an additive
model with the disease locus centered between markers at the middle
of a 100-cM map. Markers are equally spaced with four equally fre-
quent alleles. Random genotype errors were introduced for all markers
with probability equal to the analysis error rate e. Estimates are based
on 1,000 replicate data sets each. The results after error detection are
based on removal of sibling-marker combinations with high posterior
error probabilities (i.e. , where ck is the cutoffP(G ( X dX; e) 1 ck k k

value corresponding to a false-positive rate of .001).
a LOD score expected in the absence of genotype error.

correctly flagged by our method in this example are con-
sistent with using a fixed false-positive rate of .001 for
each of 100 markers; on average, we would expect to
flag falsely sibling-pair-marker.001 # 100 # 400 = 40
combinations from 400 sib pairs. Haplotype analysis of
these 36 sibling pairs indicates that 5 involve close (!5-
cM) double recombinants. The remaining 31 involve
two or more crossovers on the same haplotype. Of
course, our data were generated in the absence of in-
terference. In practice, we are likely to encounter some
level of positive interference, so our reported false-pos-
itive rates may actually be overestimates.

Table 5 illustrates the impact of our method on the
restoration of linkage information, after removing the
subset of likely errors, for a range of map densities. Not
unexpectedly, a larger fraction of the lost linkage infor-
mation is restored at higher map densities. For example,
for a recurrence risk ratio of 1.25 and prior genotype-
error rate of 1%, our method restores the maximum
LOD score to 89% of its true value at 1-cM map density
versus 71% of its true value at 5-cM map density. As a
fraction of lost linkage information, these values rep-
resent information recovery of 79% versus 45%. Note
that the results after error detection in table 5 are based
on a false-positive rate of .001, which corresponds to a
true-positive rate of at most 33% (the approximate up-
per bound for 1-cM map density). At 1-cM map density
and prior error rate or .005, ∼90% or more ofe = .01
the true maximum LOD score is restored (regardless of
genetic effect). Remarkably, nearly all of the lost linkage

information can be recovered in spite of removing only
33% of errors.

Table 6 illustrates the effect of removing data for sib-
ling-pair-marker combinations on the maximum LOD
score in the absence of linkage ( ). For the mapl = 1
densities and error rates considered and a small false-
positive rate (.001), removing the subset of likely errors
does not, on average, increase the true maximum LOD
score—that is, the value that would have been deter-
mined in the absence of errors or mutations. In fact, the
average maximum LOD score after removing likely er-
rors is always less than the true-average maximum LOD
score. Note that, among a total of 8,000 replicate data
sets, the maximum increase in LOD score was �.405.
Moreover, the increase in maximum LOD score was
!0.193 in 99.9% of all replicates.

Discussion

Even the most rigorous quality-control measures cannot
be expected to eliminate errors in genotype data, and
they certainly will not eliminate marker mutations. In-
creasing genetic map resolution and sample size com-
bined with the widespread use of sibling-pair data de-
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Table 6

Impact of Removing Likely Errors in the Absence
of Linkage ( )l = 1

Marker Spacing
and Error Rate

Mean Increase in
LOD Scorea (SD)

Maximum
Increase in
LOD Score

1 cM:
0.5% �.027 (.093) .405
1.0% �.111 (.109) .361

2 cM:
0.5% �.086 (.093) .068
1.0% �.227 (.181) .000

5 cM:
0.5% �.090 (.098) .218
1.0% �.152 (.150) .064

10 cM:
0.5% �.090 (.121) .155
1.0% �.232 (.160) .037

NOTE.—Estimates are based on 1,000 replicate data
sets of 400 sibling pairs.

a Difference between maximum LOD score with
subset of likely errors removed and without error.

Figure 3 Impact of genotyping errors and error detection on linkage information, as measured by maximum LOD score. Linkage data
were simulated for 400 sibling pairs on the assumption of a recurrence-risk ratio . Results shown are based on a 100-cM map, markersl = 1.25
with four equally frequent alleles equally spaced at 1-cM intervals, and a disease locus placed at 50.5 cM. Random genotype errors were
introduced in each sibling at each marker with probability equal to the genotype-error rate of 1%. Error removal (— —) gives linkage results
after removing sibling-pair-marker combinations with high posterior error probabilities, on the assumption of a false-positive rate of .001.

mand appropriate methods for the detection of
genotyping error and mutation. The advantages of de-
tecting genotyping error and mutation under even mod-
est error rates are demonstrated by the results of our
simulated linkage data.

The value of our method of error detection is directly
related to map density; it is most advantageous for dense
maps such as those used to examine regions identified
as interesting in initial genome scans. For example, con-
sider a region of interest with 20 markers spaced at ∼1-
cM intervals. Typing 400 sib pairs in this region requires
determination of 16,000 genotypes. A combined error
and mutation rate of 1% would result in ∼160 problem
genotypes. Using our error-detection method and a
false-positive rate of .001 would be expected to require
reinspection of 53 sibling-pair-marker combinations. Of
these, ∼44 would be the result of true genotyping errors
or mutations. If , identifying these errors wouldl = 1.25
be expected to recover ∼72% of the lost linkage infor-
mation. This corresponds to a maximum LOD score of
0.81 (with the errors), 1.51 (with a subset of errors
removed), and 1.78 if no errors are present.

In our simulations, we have removed data for sibling-
pair-marker combinations with unusually high posterior
error probabilities. Of course, removal of true recom-
binant genotypes can increase evidence for linkage, as

seen in figure 3. In fact, relaxing the false-positive rate
can substantially increase the maximum LOD score
even in the absence of linkage. For example, imposing
a false-positive rate as large as .01 and removing flagged
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genotypes increases the maximum LOD score by an
average of one unit in additional simulations, on the
assumption of a sample of 400 sibling pairs, , 1-l = 1
cM marker spacing, and a 1% genotype-error rate. This
is not surprising, because several thousand correct and
likely true recombinant genotypes are removed. For this
reason, we strongly discourage the application of in-
creasing false-positive rates as a means of maximizing
linkage information.

In practice, investigators might consider rescoring
and/or retyping the identified subset of likely errors and
mutations, depending on such factors as time, cost, and
potential benefit. Where these investigations are not
practical, it is important to emphasize that the increases
in linkage information as a result of removing a subset
of sibling-pair marker combinations are likely to be
minimal for small false-positive rates such as .0001 or
.001. Moreover, as can be seen in table 6, removing the
subset of likely errors or mutations in the absence of
linkage is unlikely to produce evidence for linkage when
it is not present, subject again to small false-positive
rates (on the order of .001–.0001). We suggest use of
larger false-positive rates only if rescoring or retyping
will be carried out. Even then, the advantage of more
complete error detection must be balanced against the
additional effort required to rescore and possibly retype
a much larger subset of potential errors and mutations.
At minimum, researchers can confidently exclude gen-
otypes for which the posterior error probabilities are
extremely high, for example, 1.90. Posterior error prob-
abilities for correct genotypes rarely, if ever, exceeded a
value of .90 under any simulation condition we
considered.

Our simulation results suggest that our method de-
tects 10%–35% of genotyping errors for dense maps
(1–3 cM) of markers with marker heterozygosity H =

and acceptable false-positive rates (.0001–.001). It.75
is clear that these low detection rates are partially con-
strained by the need to maintain a small false-positive
rate. They also, however, reflect the lack of information
in sibling-pair genotype data. For example, examination
of the 709 errors introduced into the simulated linkage
data displayed in figure 3 revealed that 47% of the
undetected errors produced no change in IBS sharing
between the sibling pair at the marker of interest. In
contrast, 100% of detected errors produced either 1 or
2 allele decreases in IBS sharing. Analyses of other sim-
ulated data sets revealed a similar pattern. The rela-
tionship between change in IBS sharing and error de-
tection explains why our method flags exactly those
errors that have the largest impact on linkage results:
the easiest errors to detect are typically those that have
the largest impact on linkage information.

We have used Monte Carlo simulation to determine
marker-specific cutoff constants to identify unusually

high posterior error probabilities. We have made this
choice for two reasons. First, our simulations confirmed
that the empirical distributions of the posterior error
probabilities are a function of map density, prior error
rate, marker position, and marker allele frequencies,
parameters which will vary from one data set to the
next. Second, Monte Carlo simulation has the advan-
tage of being completely specific to the data at hand,
thereby providing a mechanism for controlling the false-
positive rate, and is both quick and simple to implement
with sibling-pair data.

Our rather simple error model (as a first approxi-
mation) was generally robust to the underlying error-
generating mechanism. Our ability to detect heterozy-
gous-to-homozygous errors was closest to that for
random genotype error. Random allele errors were
somewhat more difficult to detect, whereas homozy-
gotes being mistaken as adjacent-allele heterozygotes
were noticeably more difficult to detect. Still, the re-
covery of lost linkage information by our method of
error detection is comparable across these error mech-
anisms. Further, the differences in detection rates can
largely be explained by the reduction in IBS allele shar-
ing resulting from these different mechanisms. In fact,
analytical calculation reveals that the reduction in IBS
allele sharing is greatest under random genotype error
and least under homozygous-to-heterozygous error. Ad-
ditional information regarding the nature of possible
errors for specific markers might suggest the incorpo-
ration of more complex error models. Given the success
of our method in recovering linkage information lost to
genotyping error, we have not pursued this further.

In the simulations we reported, we assumed that
markers were equally spaced and of known order and
that the genotype-error rate was correctly specified. Ad-
ditional simulations with unequal marker spacing (data
not shown) and analysis of type 2 diabetes data from
the FUSION study (Ghosh et al. 1999) demonstrate that
the equal-spacing assumption is not critical. To test the
effect of misspecified marker order, we altered the map
by changing the order of two nearby markers, either
flanking our marker of interest or immediately adjacent
to it. For marker spacings of 1–5 cM, the ability to
detect errors was essentially unchanged by these sorts
of misspecifications in marker order. This is not sur-
prising, because the level of allele sharing across a set
of such tightly linked markers will be largely unaffected
by modest errors in marker order. In addition, repeat
analyses with analysis genotype-error rates different
from the true genotype-error rates had little impact on
the detection rates or the restoration of linkage
information.

Identifying likely genotyping errors and mutations by
our method is simple and quick; the posterior error
calculations for a sample of 400 sibling pairs genotyped
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on 100 markers required !1 min computation time on
a SUN workstation. Monte Carlo simulation to deter-
mine the marker-specific cutoff constants required an
additional 20 min. We have written the FORTRAN 77
program SIBMED (sib-pair mutation error detection) to
carry out the computations and simulations on a set of
linked markers for a sample of sibling pairs. Our pro-
gram also allows the user to forgo Monte Carlo sim-
ulation and instead produce a ranked list of posterior
error probabilities with the associated sibling-pair-
marker combination information. The program is freely
available both on the World Wide Web (see Electronic-
Database Information section) and from us, via elec-
tronic mail (jddoug@umich.edu or boehnke@umich
.edu).
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