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Joint Modeling of Linkage and Association: Identifying SNPs Responsible
for a Linkage Signal
Mingyao Li, Michael Boehnke, and Gonçalo R. Abecasis
Department of Biostatistics, School of Public Health, and Center for Statistical Genetics, University of Michigan, Ann Arbor

Once genetic linkage has been identified for a complex disease, the next step is often association analysis, in which
single-nucleotide polymorphisms (SNPs) within the linkage region are genotyped and tested for association with
the disease. If a SNP shows evidence of association, it is useful to know whether the linkage result can be explained,
in part or in full, by the candidate SNP. We propose a novel approach that quantifies the degree of linkage
disequilibrium (LD) between the candidate SNP and the putative disease locus through joint modeling of linkage
and association. We describe a simple likelihood of the marker data conditional on the trait data for a sample of
affected sib pairs, with disease penetrances and disease-SNP haplotype frequencies as parameters. We estimate model
parameters by maximum likelihood and propose two likelihood-ratio tests to characterize the relationship of the
candidate SNP and the disease locus. The first test assesses whether the candidate SNP and the disease locus are
in linkage equilibrium so that the SNP plays no causal role in the linkage signal. The second test assesses whether
the candidate SNP and the disease locus are in complete LD so that the SNP or a marker in complete LD with it
may account fully for the linkage signal. Our method also yields a genetic model that includes parameter estimates
for disease-SNP haplotype frequencies and the degree of disease-SNP LD. Our method provides a new tool for
detecting linkage and association and can be extended to study designs that include unaffected family members.

Introduction

Positional cloning is widely used for identification of
genes involved in human diseases. To date, hundreds of
disease genes have been identified solely on the basis of
their chromosomal position (Botstein and Risch 2003);
examples include hemochromatosis (Feder et al. 1996),
inflammatory bowel disease (Hugot et al. 2001; Ogu-
ra et al. 2001), and lactose intolerance (Enattah et al.
2002). The first step in a traditional positional-cloning
approach involves a genomewide linkage analysis per-
formed on a collection of families with multiple affected
individuals. Often, linkage analysis results in a candi-
date region of 10–20 Mb. To localize the susceptibility
allele more precisely, disease-marker association analyses
with additional genetic markers specific to the linked re-
gion can be performed. With recent progress on high-
throughput SNP genotyping (Sachidanandam et al.
2001; Syvanen 2001; Oliphant et al. 2002; Olivier et al.
2002) and the HapMap project (International HapMap
Consortium 2003), these follow-up association studies
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are becoming less expensive and now routinely include
hundreds or thousands of markers.

Association analysis often compares marker-allele fre-
quencies between unrelated case and control subjects.
In this design, only a subset of the samples originally
collected for linkage analysis can be reused. As an al-
ternative, family-based association methods have been
developed. Family-based association tests offer a com-
promise between traditional linkage studies and case-
control association studies. The classic family-based
transmission/disequilibrium test was proposed to test
for association in the presence of linkage in family trios
containing two parents and one affected offspring
(Spielman et al. 1993). This approach has been extend-
ed to discordant sib pairs (Curtis 1997; Boehnke and
Langefeld 1998), sibships with multiple affected and
unaffected sibs (Spielman and Ewens 1998), general
pedigrees (Martin et al. 2000), and quantitative traits
(Allison 1997; Rabinowitz 1997; Abecasis et al. 2000a,
2000b).

A shortcoming of these family-based association
methods is that, although they test for association, they
cannot distinguish between potentially causal SNPs and
other variants showing weaker association, except in
the case of quantitative traits (Cardon and Abecasis
2000). Göring and Terwilliger (2000) proposed a uni-
fied theoretical model for linkage and linkage disequi-
librium (LD) analysis through the use of a “pseudo-
marker” locus, but their approach cannot accommodate
information contributed by flanking markers. Hori-
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kawa et al. (2000) suggested a modified association ap-
proach by examining how the evidence of linkage was
partitioned in accordance with the genotype at the as-
sociated SNP, but they did not explore the properties
of this approach. Li et al. (2004) explored the relation-
ship between family-specific weights based on the af-
fected individuals’ genotypes and family-specific non-
parametric linkage (NPL) scores, but their method does
not quantify the relationship between SNP alleles and
the linkage signal. Sun et al. (2002) developed an ap-
proach that identifies SNPs whose genotypes can fully
explain the observed linkage signal, but their test does
not identify SNPs that play a partial role in explaining
the linkage signal.

In this article, we describe a statistical framework that
identifies candidate SNPs that can fully or partly explain
the observed linkage signal, through joint modeling of
linkage and association with the use of affected sib pairs
(ASPs). Our method uses genotype information con-
tributed by both the candidate SNP and the flanking
markers. When a candidate SNP is identified as being
able to account for linkage, our approach estimates the
degree of LD between the candidate SNP and disease
alleles. The estimate of disease-SNP LD quantifies the
degree to which the linkage signal can be explained by
the candidate SNP. We summarize the available infor-
mation using a simple likelihood of the marker data
conditional on the trait data, with disease penetrances
and disease-SNP haplotype frequencies as parameters.
We estimate model parameters by maximum likelihood
and propose two likelihood-ratio tests to characterize
the relationship between the candidate SNP and the pu-
tative disease locus. We calculate LD between disease
and SNP alleles on the basis of haplotype-frequency
estimates. Our method can identify both associated and
potentially causal SNPs. Here, we focus on the ASP
study design, but our method can be readily extended
to accommodate unaffected individuals and other fam-
ily structures, as well as unrelated individuals.

Methods

Assumptions and Definitions

We assume that there is a set of ASPs typed for a
candidate SNP and flanking markers that canM � 0
help evaluate evidence for linkage. We wish to evaluate
evidence for association at the candidate SNP and to
estimate the degree of LD with the unobserved disease
locus. If there are multiple SNPs, we consider them one
at a time as the candidate SNP. We allow LD between
the candidate SNP and the unobserved disease alleles,
but we assume linkage equilibrium between the flanking
markers and the candidate SNP. Our goal is to quantify
the relationship between the candidate SNPs and the
unobserved disease alleles. Our method assumes that a

single diallelic polymorphism directly contributes to risk
in each linked region. We address the implications of
multiple disease variants in the “Discussion” section.

Consider a diallelic disease locus with disease-predis-
posing allele D (with frequency ) and wild-type allelepD

d (with frequency ) and a nearby diallelicp p 1 � pd D

SNP with alleles A (with frequency ) and a (with fre-pA

quency ). Denote the four disease-SNP hap-p p 1 � pa A

lotypes as DA, Da, dA, and da (with frequencies ,pDA

, , and , respectively). We assume Hardy-Wein-p p pDa dA da

berg equilibrium in the general population for all mark-
ers, including the superlocus formed by the combination
of the disease and SNP loci. Let bef p P(affectedFg)g

the penetrance for a given genotype g � {dd, Dd, DD}
at the disease locus. By definition, the population prev-
alence of the disease, K, is equal to 2f p � 2f p p �dd d Dd d D

, the attributable fraction equals , and the2f p K � f /KDD D dd

genotype relative risk (GRR) equals .f /fg dd

Let be the ob-X p (X , … , X , X , X , … , X )1 k SNP k�1 M

served marker genotypes for the ASP, and let the prob-
ability of no change in identity-by-descent (IBD) status
between consecutive markers be ,2 2w p v � (1 � v )m m m

where is the recombination fraction between markersvm

m and m � 1 ( ). Let , , and be1 � m � M � 1 I I Im SNP D

the possibly unknown number of alleles shared IBD by
an ASP at marker m, at the candidate SNP, and at the
putative disease locus, respectively. For now, assume that
there is no recombination between the candidate SNP
and the disease locus, so that . Denote diseaseI p ISNP D

locus IBD-sharing probabilities for an ASP by z pi

, where , and . ForP(I p iFASP) i p 0,1,2 z p (z ,z ,z )D 0 1 2

ease of computation, we assume that there is no genetic
interference, so that forms a hidden Markov chain.{I }m

Conditional Probability of Marker Data, Given an ASP

We wish to calculate , the probability of theP(XFASP)
marker genotype data X for an ASP. By applying the
forward and backward algorithms of Baum (1972),

can be calculated asP(XFASP)

P(XFI ; ASP)P(I FASP)� D D
ID

p P(X , … ,X FI )P(X , … ,X FI )� 1 k D k�1 M D
ID

# P(X ,I FASP)SNP D

p P[I FI ]L [I ]� � k D k k( ){I ID k

# P[I FI ]R [I ] P(X ,I FASP) , (1)� k�1 D k�1 k�1 SNP D( ) }Ik�1



936 Am. J. Hum. Genet. 76:934–949, 2005

Table 1

Conditional Probabilities for OrderedP(X FI )m m

Sib-Pair Genotypes Xm

Xm

FORP(X FI )m m

I p 0m I p 1m I p 2m

(aa, aa) 4pa
3pa

2pa

(aa, ab) 32p pa b
2p pa b 0

(aa, bb) 2 2p pa b 0 0

(aa, bc) 22p p pa b c 0 0

(ab, ab) 2 24p pa b p p (p � p )a b a b 2p pa b

(ab, ac) 24p p pa b c p p pa b c 0

(ab, cd) 4p p p pa b c d 0 0

NOTE.—a, b, c, and d are distinct alleles with
frequencies , , , and , respectively.p p p pa b c d

Table 2

IBD Transition Probabilities for a Sib PairP(I FI )m+1 m

Im

FORP(I FI )m�1 m

I p 0m�1 I p 1m�1 I p 2m�1

0 2wm 2w (1 � w )m m
2(1 � w )m

1 w (1 � w )m m
2 2w � (1 � w )m m w (1 � w )m m

2 2(1 � w )m 2w (1 � w )m m
2wm

NOTE.— , where is the re-2 2w p v � (1 � v ) vm m m m

combination fraction between loci m and m � 1.

where k and k � 1 are the flanking markers on the left-
and right-hand sides of the candidate SNP.

At an arbitrary marker m ( ),1 � m � M

L (I ) p P(X , … ,X FI )m m 1 m m

p L (I )P(X FI )P(I FI )� m�1 m�1 m m m�1 m
Im�1

and

R (I ) p P(X , … ,X FI )m m m M m

p R (I )P(X FI )P(I FI ) .� m�1 m�1 m m m�1 m
Im�1

Special cases are andL ( I ) p P (X F I ) R ( I ) p1 1 1 1 M M

. The conditional probabilities of the genotypeP(X FI )M M

data, given the number of alleles shared IBD by the sib
pair at marker m, , are given in table 1 (Thomp-P(X FI )m m

son 1975). IBD transition probabilities, , areP(I FI )m�1 m

given in table 2 (Risch 1990). Recursive calculation
of and allows the rapid evaluation ofL (I ) R (I )m m m m

in a manner linear to the number of markers,P(XFASP)
M.

To calculate , let denote the disease-P(X ,I FASP) GSNP D j

SNP haplogenotype for sib . Summing over allj p 1,2

ordered haplogenotypes that are consistent with the ob-
served SNP genotypes, we get

P(X ,I FASP) p P(G ,G ,I FASP)�SNP D 1 2 D
(G ,G )∼X1 2 SNP

P(ASPFG ,G )P(G ,G FI )P(I )1 2 1 2 D Dp �
P(ASP)(G ,G )∼X1 2 SNP

f f P(G ,G FI )P(I )G G 1 2 D D1 2p , (2)�
P(ASP)(G ,G )∼X1 2 SNP

where can be calculated from table 1 byP(G ,G FI )1 2 D

regarding each haplogenotype as a genotype of the su-
perlocus that has up to four alleles. For a sib pair,

takes the values (1/4, 1/2, 1/4). To illustrate howP(I )D

equation (2) is calculated, consider an ASP with SNP
genotype A/A for the first sib and a/a for the second sib.
The disease-SNP genotypes that are consistent with the
observed SNP genotypes are � {DA/DA, DA/dA, dA/G1

dA} and . If , then theG � {Da/Da, Da/da, da/da} I p 02 D

numerator of equation (2) is

f f P(G ,G FI p 0)P(I p 0)� G G 1 2 D D1 2
(G ,G )∼X1 2 SNP

1 2 2( )p f p � 2f p p � f p{ DD DA Dd DA dA dd dA4

2 2( )# f p � 2f p p � f p .}DD Da Dd Da da dd da

Similarly, we can obtain the probability of an ASP, where

P(ASP) p f f P(G ,G FI )P(I ) . (3)� � G G 1 2 D D1 2
I (G ,G )D 1 2

In the calculation of equations (2) and (3), we assume
that the disease-affection statuses of the ASP are con-
ditionally independent, given their genotypes at the dis-
ease locus. This is a common assumption for parametric
likelihood calculation. It is exactly true when there are
no other genetic or environmental risk factors shared
among siblings, and it is a reasonable approximation
when there are multiple disease-causing variants or
shared environmental risk factors.

Our calculation allows analysis with missing geno-
types. For example, to accommodate ASPs in which only
one sib is genotyped at the candidate SNP, we sum over
all possible SNP genotypes for the sib with missing ge-
notype. Our calculation can also be readily extended to
sib-pair samples that include unaffected individuals, by
replacing in equations (2) and (3) with for anf 1 � fG Gj j

unaffected individual.
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Table 3

Relationship of Disease Locus and Candidate SNP

Likelihood Linkage
Disease-SNP
Relationship r2 Parametersa Constraintsa

LUL Unlinked Linkage equilibrium 0 pA 0 ! p ! 1A

LLE Completely linked Linkage equilibrium 0 z , z , p0 1 A ; ;0 � z � 0.5 0 � z � 0.5z 0 ! p ! 11 0 1 A

LLD Completely linked Complete LD 1 f , f , f , p p p p pdd Dd DD D A ;0 � f , f , f � 1 0 ! p ! 1dd Dd DD

LGM Completely linked Any level of LD [0, 1] f , f , f , p , p , pdd Dd DD DA Da dA ; ;0 � f , f , f � 1 0 � p , p , p � 1dd Dd DD DA Da dA

0 � p � p � p � 1DA Da dA

a Disease penetrances , , and are assumed to be not all equal.f f fdd Dd DD

Table 4

Characteristics of Simulated Disease Models

MODEL

l p 1.1s l p 1.3s

fdd fDd fDD pD AFa GRR fdd fDd fDD pD AFa GRR

Dominant .017 .047 .047 .05 .148 2.78 .015 .067 .067 .05 .256 4.53
.014 .035 .035 .15 .283 2.42 .010 .046 .046 .15 .490 4.46
.010 .029 .029 .30 .478 2.79 .003 .036 .036 .30 .828 10.41

Recessive .019 .019 .261 .05 .030 13.48 .019 .019 .438 .05 .052 23.12
.018 .018 .094 .15 .085 5.15 .017 .017 .149 .15 .148 8.72
.017 .017 .053 .30 .165 3.19 .014 .014 .078 .30 .285 5.43

Additive .017 .046 .075 .05 .145 2.70, 4.39 .015 .065 .115 .05 .251 4.36, 7.71
.015 .032 .050 .15 .266 2.21, 3.41 .011 .041 .072 .15 .460 3.84, 6.68
.012 .026 .039 .30 .414 2.18, 3.36 .006 .030 .053 .30 .717 5.23, 9.45

NOTE.—Population disease prevalence K was fixed at 2%.
a AF p attributable fraction.

The Relationship between Disease Locus and
Candidate SNP

A useful measure of LD between two loci is the
squared statistical correlation, defined as 2r p (p �DA

in a sample of phased hap-2p p ) /[p (1 � p )p (1 � p )]D A D D A A

lotypes. Multiplying by the sample size yields the x22r
statistic for comparison of allele frequencies between
cases and controls in a random population sample. 2r
measures the degree of LD between the candidate SNP
and the putative disease locus, as represented by the
observed linkage signal, and can quantify the degree to
which the linkage signal is explained by the candidate
SNP. The candidate SNP and the putative disease locus
can be in linkage equilibrium ( ), complete LD2r p 0
( ), or partial LD ( ). Under linkage equi-2 2r p 1 0 ! r ! 1
librium, the candidate SNP is not associated with the
putative disease locus and plays no causal role in the
linkage signal. Under complete LD, the candidate SNP
or a marker in complete LD with it can fully account
for the linkage signal; we call this model “plausible cau-
sality.” Under partial LD, the candidate SNP partially
accounts for the linkage signal.

We parameterize our models by using three pene-
trances, , , and , in addition to (1) allele fre-f f fdd Dd DD

quencies and for the linkage equilibrium model,p pD A

(2) single-allele frequency for the completep p p p pD A

LD model, and (3) haplotype frequencies , , andp pDA Da

for the general model. Given only ASPs, each of thesepdA

models is identifiable, except the linkage equilibrium
model, in which parameters ( , , , , and ) aref f f p pdd Dd DD D A

not all identifiable, because the data contain informa-
tion for only and , corresponding top z p (z ,z ,z )A 0 1 2

a total of 3 df, since . To achieve anz � z � z p 10 1 2

identifiable model, note that, under linkage equilib-
rium, and thatP(X , I FASP) p P (X FI ) P (I FASP)SNP D SNP D D

depends on only . Thus, the linkage equi-P(X FI ) pSNP D A

librium model can be reparameterized in terms of
( ), resulting in a likelihood similar to the tradi-z ,z ,p0 1 A

tional maximum LOD score (MLS) linkage test (Risch
1990) but with an additional parameter, . Here, wepA

assume that the candidate SNP is completely linked to
the putative disease locus. In theory, one could allow
recombination between the candidate SNP and the pu-
tative disease locus as well. However, there is confound-
ing between recombination and IBD sharing at the SNP
(Risch 1990). A commonly used approach to avoid con-
founding in multipoint MLS calculation is to assume no
recombination. IBD-sharing probabilities z p (z ,z ,z )0 1 2

should satisfy the triangle constraint and0 � z � 0.51

(Holmans 1993).0 � z � 0.5z0 1

The previous models assume that the candidate SNP
is completely linked to the putative disease locus. If the
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Figure 1 Power to reject linkage equilibrium ( ). Results2r p 0
are based on 2,000 replicates of 500 ASPs. All models have population
disease prevalence K p 2% and sibling recurrence-risk ratio l ps

. Power was assessed at the 5% level.1.1

candidate SNP is unlinked, then IBD-sharing probabil-
ities at the SNP should be , and thez p (1/4, 1/2, 1/4)
only estimable parameter is . As such, the relationshippA

between the candidate SNP and the putative disease lo-
cus falls into one of four models (table 3).

For a sample of independent ASPs, the retrospective
likelihood of the data is

L p P(XFASP) , (4)�
where the product is taken over all independent ASPs.
Here, we chose to use a retrospective likelihood because
the data are ascertained through the disease-affection
statuses of the ASPs. The use of a retrospective likelihood
can avoid the problem of ascertainment bias so that the
parameter estimates are valid for the general population.
To maximize equation (4), we use a simplex algorithm
(Nelder and Mead 1965), an optimization method that
does not require derivatives. Below, we represent the
maximum of a particular likelihood subject to its pa-
rameter constraints by . In addition, we estimate 2L̂ r
from frequency estimates of disease-SNP haplotype fre-
quencies. The estimate of is of particular interest in2r
the case of partial disease-SNP LD; it reflects the degree
to which a linkage result is explained by the candidate
SNP.

Likelihood-Ratio Statistic

Given different relationships between the candidate
SNP and the disease locus, we can test for linkage, as-
sociation, and plausible causality. We evaluate evidence
for linkage with (see ta-ˆ ˆMLS p log (L ) � log (L )10 LE 10 UL

ble 3 for explanations of , , , and ). WeL L L LLE UL GM LD

evaluate evidence for association by testing whether
the candidate SNP is in linkage equilibrium with the
disease locus by use of the likelihood-ratio statistic

. Rejection of linkage equi-ˆ ˆT p 2[ln (L ) � ln (L )]LE GM LE

librium between the disease and SNP loci suggests the
candidate SNP is associated with the disease locus and
can account (in part) for the observed linkage signal.
We examine plausible causality by testing whether
the candidate SNP is in complete LD with the disease
locus by use of the likelihood-ratio statistic T pLD

. Rejection of complete LD for anˆ ˆ2[ln (L ) � ln (L )]GM LD

associated SNP suggests that the SNP cannot fully ac-
count for the observed linkage signal. If there is a single
disease causal variant in the region, then it must be an-
other SNP; otherwise, there might be other disease causal
variants in the region.

Empirical Null Distributions for Tests of Linkage
Equilibrium and Complete LD

The asymptotic distributions of and under theT TLE LD

null hypotheses might, in principle, be approximated by
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Figure 2 Power to reject complete LD ( ). Results are based2r p 1
on 2,000 replicates of 500 ASPs. All models have population disease
prevalence K p 2% and sibling recurrence-risk ratio . Powerl p 1.3s

was assessed at the 5% level.

a mixture of x2 distributions (Self and Liang 1987), but
we have not derived the degrees of freedom and mixing
parameters, because of the complexity of parameter con-
straints and boundaries. Alternatively, the significance
of the tests can be assessed empirically by simulating
marker genotypes under the null hypothesis and com-
paring the observed statistic with the simulated null dis-
tribution. One possibility would be to estimate disease-
locus parameters and marker-allele frequencies under the
null hypothesis and then to simulate genotypes for the
candidate SNP and flanking markers conditional on the
estimated parameters and observed phenotypes. In our
preliminary investigations, this approach led to inflated
type I error rates (data not shown), and we describe
below, in detail, alternative strategies that may be the-
oretically less efficient but perform well in all the settings
we examined.

For the statistic, employed when the null hypoth-TLE

esis assumes linkage equilibrium between trait and
marker loci, we sample SNP genotypes conditional on
flanking-marker genotypes and estimated model param-
eters. In contrast, for the statistic, employed whenTLD

the null hypothesis assumes complete LD between the
candidate SNP alleles and disease-susceptibility alleles,
we sample flanking-marker genotypes conditional on
the observed candidate SNP genotypes and estimated
parameters.

For the linkage-equilibrium model, we use the ob-
served data to obtain the SNP allele-frequency esti-
mate and the IBD-sharing probability estimatesp̂A

at the candidate SNP. To obtain a simu-ˆ ˆ ˆ ˆz p (z ,z ,z )0 1 2

lated sample under linkage equilibrium, for each ASP,
we retain flanking-marker data and simulate the IBD
configuration at the candidate SNP in accordance with

P(I FX , … ,X ,ASP)D 1 M

ˆ∝ P(X , … ,X FI )P(X , … ,X FI )z ,1 k D k�1 M D ID

for ID p 0,1,2 and where P( ,…, ) and P( ,…,X X FI X1 k D k�1

) are the left- and right-chain probabilities calcu-X FIM D

lated in equation (1). Given the IBD configuration at the
candidate SNP, the ASP’s candidate-SNP genotypes can
then be sampled on the basis of the estimated candidate-
SNP allele frequency, . Note that, when flanking-p̂A

marker genotypes are not available, P( …, ) pX , X FI1 k D

P( …, , so that sampling is conditionalX , X FI ) p 1k�1 M D

on only the estimated parameter values and phenotypes.
We obtain the null distribution of by simulating aTLE

large number of replicates and calculating the statistic
for each simulated data set.

Our procedure for simulating the null distribution of
is different. Note that, if the candidate SNP is inTLD

complete LD with the disease locus alleles (or it is the
disease locus itself), then candidate SNP genotypes
should be sufficient to explain IBD sharing in the region.
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Figure 3 Impact of linkage evidence on test of complete LD.
Results are based on 2,000 replicates of 500 ASPs under a dominant
model with population disease prevalence K p 2%, allele frequency

, and sibling recurrence-risk ratio . Power wasp p p p 0.30 l p 1.3D A s

assessed at the 5% level.

This observation has previously been used by Sun et al.
(2002), who calibrated the significance of their test by
sampling flanking-marker genotypes conditional on the
observed SNP genotypes for each ASP. For each ASP, we
leave the candidate SNP genotypes for the ASP unchan-
ged from their observed values. Then, we sample an IBD
configuration at the candidate SNP conditional on the
observed SNP genotypes for the ASP and the estimat-
ed parameters and obtained˜ ˜ ˜ ˜ ˜ ˜(f , f , f ) p p p p pdd Dd DD D A

from the complete LD model in accordance with

P(I FX ,ASP) ∝ P(X ,I FASP) ,D SNP SNP D

which can be obtained from equation (2). Finally, we
sample genotypes for flanking markers, conditional on
the IBD configuration at the candidate SNP. Specifically,
we sample genotypes at marker k in accordance with
transition probabilities and the allele frequen-P(I FI )k D

cies of marker k. The genotypes of marker k � 1 are
sampled similarly but with transition probabilities

. Moving left and right along the chromosome,P(I FI )k�1 D

we simulate flanking-marker genotypes on the basis
of and , respectively. We obtain theP(I FI ) P(I FI )m�1 m m�1 m

null distribution of by simulating a large number ofTLD

replicates and calculating the statistic for each simulated
data set. This procedure for generating the empirical
distribution of has some limitations. In particular,TLD

when there are no flanking markers, our procedure
leaves the original data unchanged, and so it is not pos-

sible to evaluate the significance of a particular value for
. Nevertheless, and as shown in the “Results” section,TLD

flanking markers provide most of the information re-
quired to distinguish between markers in complete LD
and those in partial LD with the disease locus; thus, the
distribution of when there are no flanking markersTLD

is of little practical interest.

Simulations

We conducted a number of simulations to explore the
properties of our proposed tests of no association and
plausible causality and the resulting estimates of genetic
model parameters. Table 4 describes the disease models
we considered, which varied over a range of attributable
fractions, disease-allele frequencies, GRRs, and sibling
recurrence-risk ratio ls, defined as the recurrence risk
for a sib of an affected individual divided by the pop-
ulation disease prevalence (Risch 1987). For all disease
models, the population prevalence K of the disease was
fixed at 2%.

In each model, we assumed the disease- and SNP-allele
frequencies to be identical and, except where noted, used
a map of 10 markers with eight equally frequent alleles
(heterozygosity [H] of .875) evenly spaced at 11.16-cM
intervals, corresponding to recombination fraction 0.10
under the no-interference map function of Haldane
(1919). We centered the disease and SNP loci in the
middle of the map and assumed zero recombination be-
tween them. We removed disease-locus genotypes prior
to data analysis. For each of the disease models in table
4, we simulated 5,000 replicates of 500 ASPs under link-
age equilibrium or complete LD to obtain null distri-
butions and to determine critical values for each test.
We simulated 2,000 replicates of 500 ASPs with various
levels of disease-SNP LD to assess the empirical power
of the corresponding tests. Here, we simulated the null
distributions by using their generating values. In the
“Discussion” section, we consider the impact of the use
of null distributions estimated using our computation-
ally intensive resampling procedures.

Results

Power to Reject Linkage Equilibrium (No Association)

Figure 1 displays the estimated power to reject the
hypothesis of linkage equilibrium as a function of for2r
the disease models in table 4. As expected, the power of

increases as increases, for all disease models, and2T rLE

it is at its maximum when . Figure 1 also shows2r p 1
that, for models with the same ls, it is relatively easier
to detect association for a less-common disease allele
than for a common one. More generally, we found that
the power of the test is closely related to the GRR. We
found that, for a fixed ls, lower disease-allele frequencies
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Figure 4 Impact of the number of flanking markers. Results are based on 2,000 replicates of 500 ASPs simulated under an additive model
with population disease prevalence K p 2%, allele frequency , and sibling recurrence-risk ratios (A) and 1.3 (B). Datap p p p 0.15 l p 1.1D A s

were simulated using 10 flanking markers, each with two equally frequent alleles. Intermarker recombination fraction is 0.1. Power was assessed
at the 5% level.

generally corresponded to a higher GRR for the disease
models we considered.

These simulation results indicate that our method has
good power to detect whether a candidate SNP is as-
sociated with the putative disease locus, even when the
genetic effect is modest ( ). In each set of sim-l p 1.1s

ulations, we found that the power of the test of linkage
equilibrium to detect disease-SNP association does not
depend on the magnitude of the observed linkage signal.
Our results show that, given the same genetic effect as
measured by , the power of estimated using rep-l Ts LE

licates with smaller MLS is nearly identical to the power
of estimated using replicates with larger MLS. ForTLE

complex diseases with modest genetic effects, increased
sharing near a disease locus can be overwhelmed by
sampling variation in IBD estimates. Even when the evi-
dence for linkage is absent, our method still yields a valid
and useful test of association.

Power to Reject Complete LD (Plausible Causality)

Intuitively, one would expect the power to reject the
hypothesis of complete LD to increase as decreases2r
from 1, with maximum power when . Figure 22r p 0
shows that the simulation results agree well with this
expectation for our recessive and additive models but
not for our dominant models. In our simulations, we
found that the magnitude of the statistic is highlyTLD

correlated with the MLS when is low, and the de-2r

pendence becomes less strong as increases. To illus-2r
trate this effect, we estimated power using those replicate
data sets in which MLS is 11 or 12.5 for a dominant
model with and . Figure 3 sug-p p p p 0.30 l p 1.3D A s

gests that our ability to detect complete LD is dramat-
ically enhanced as the MLS increases. For example, when

, the power is 46% given no minimum MLS re-2r p 0
quirement but increases to 88% when MLS 11 and in-
creases to nearly 100% when MLS 12.5.

In general, determining that a SNP is not in complete
LD with the disease allele is more difficult than detecting
whether it is associated with the disease allele, and it
generally requires a larger sample. Our simulation results
suggest that, at the same level of genetic effect as mea-
sured by ls, it is easier to evaluate whether a SNP might
be in complete LD with the disease allele if the disease
is recessive. This might be because the ASPs are more
likely to share two alleles IBD under a recessive model
than under a dominant model, and such excess IBD shar-
ing provides more information on linkage. Since the
power of depends strongly on the magnitude of theTLD

observed linkage signal, this situation provides greater
power to evaluate whether a candidate SNP is plausibly
causal.

Parameter Estimates

Our method yields maximum-likelihood estimates of
the disease-SNP haplotype frequencies directly, and,
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Table 5

Results for Additive Model

,p p pD A

r2, and ASPs

MEAN (EMPIRICAL SD) VALUE

l p 1.1s l p 1.3s

P̂D P̂A l̂S
2r̂ P̂D P̂A l̂S

2r̂

:p p p p .05D A

:2r p .00
500 .28 (.17) .09 (.04) 1.08 (.07) .28 (.36) .23 (.13) .08 (.06) 1.22 (.10) .17 (.29)
2,000 .25 (.12) .07 (.02) 1.08 (.04) .16 (.23) .20 (.08) .07 (.03) 1.24 (.06) .13 (.25)

:2r p .33
500 .22 (.22) .07 (.02) 1.11 (.06) .31 (.33) .11 (.15) .07 (.02) 1.28 (.12) .40 (.28)
2,000 .16 (.09) .06 (.02) 1.10 (.04) .35 (.29) .05 (.06) .06 (.02) 1.27 (.06) .38 (.22)

:2r p .67
500 .09 (.13) .06 (.02) 1.13 (.07) .55 (.37) .05 (.03) .06 (.02) 1.30 (.09) .56 (.32)
2,000 .06 (.03) .06 (.01) 1.11 (.03) .65 (.30) .04 (.02) .06 (.01) 1.29 (.05) .56 (.28)

:2r p 1.00
500 .06 (.04) .06 (.02) 1.15 (.07) .64 (.33) .05 (.02) .06 (.02) 1.34 (.09) .67 (.34)
2,000 .05 (.02) .06 (.01) 1.12 (.03) .69 (.31) .04 (.01) .06 (.01) 1.31 (.04) .74 (.32)

:p p p p .30D A

:2r p .00
500 .48 (.22) .34 (.08) 1.06 (.05) .40 (.33) .47 (.18) .34 (.07) 1.17 (.11) .20 (.24)
2,000 .45 (.12) .34 (.03) 1.03 (.03) .33 (.28) .44 (.07) .33 (.03) 1.16 (.05) .08 (.11)

:2r p .33
500 .33 (.15) .33 (.06) 1.08 (.06) .48 (.31) .31 (.15) .32 (.06) 1.21 (.10) .44 (.27)
2,000 .31 (.10) .32 (.03) 1.05 (.03) .46 (.27) .30 (.11) .32 (.03) 1.20 (.05) .38 (.18)

:2r p .67
500 .28 (.12) .33 (.06) 1.12 (.06) .56 (.30) .28 (.10) .32 (.06) 1.27 (.10) .65 (.27)
2,000 .27 (.08) .32 (.03) 1.09 (.03) .64 (.24) .29 (.06) .32 (.03) 1.26 (.05) .68 (.18)

:2r p 1.00
500 .27 (.10) .32 (.06) 1.15 (.06) .64 (.30) .28 (.06) .32 (.06) 1.34 (.11) .82 (.23)
2,000 .27 (.06) .31 (.03) 1.13 (.03) .73 (.22) .29 (.03) .31 (.03) 1.32 (.05) .90 (.13)

NOTE.—Results are based on 2,000 replicates of data sets simulated under an additive model with population
disease prevalence K p 2%.

from those, we can calculate estimates of LD measures,
such as . Mean parameter estimates and empirical SDs2r
for the additive model, given 500 and 2,000 ASPs, are
listed in table 5. The bias of parameter estimates is sim-
ilar for dominant and recessive models (data not shown).

The bias of the maximum-likelihood allele-frequency
estimates generally decreases as increases to values2r
close to 1, corresponding to greater information about
the disease locus. Maximum-likelihood estimates are as-
ymptotically unbiased under appropriate regularity con-
ditions, notably when no null hypothesis parameter
value is on the boundary of the parameter space. In our
case, results in two disease-SNP haplotypes with2r p 1
a frequency of 0, so our parameter estimates may be
biased even in large samples. From table 5, we see that,
when , can be underestimated and ls is slightly2r p 1 pD

overestimated, with the bias decreasing as the sample
size and magnitude of genetic effect increase.

Impact of Flanking Markers

To investigate the impact of flanking-marker data on
our tests of disease-SNP LD, we simulated additional
data sets using a map of 10 flanking markers, each with

two equally frequent alleles ( ). We analyzedH p .50
each of our data sets using 0, 2, 4, or all 10 flanking
markers. Figure 4 suggests that having at least two flank-
ing markers improves performance for both tests, but
especially for the test of complete LD. Results based on
2, 4, or 10 flanking markers show only slight differences.
Note that results are presented in figure 4B for the eval-
uation of the significance of when there are no flank-TLD

ing markers. Although this is possible for a simulation
study such as this (in which the true population param-
eter values are known and were used to simulate the
null distribution of the statistic), it is not practical for
analysis of real data, since our procedure for evaluating
the empirical distribution of requires information onTLD

flanking markers. In practice, this is not a serious lim-
itation, because has very low power when there areTLD

no flanking markers, and we recommend that it should
be used only when at least two flanking markers are
available.

We next assessed the impact of flanking-marker het-
erozygosity on power estimation by conducting ad-
ditional simulations using two flanking markers, each
with two ( ), four ( ), or eight (H p .50 H p .75 H p
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Figure 5 Impact of heterozygosity of flanking markers. Results are based on 2,000 replicates of 500 ASPs simulated under an additive
model with population disease prevalence K p 2%, allele frequency , and sibling recurrence-risk ratios (A) and 1.3p p p p 0.15 l p 1.1D A s

(B). Data were simulated using two flanking markers, each with two, four, or eight equally frequent alleles. Intermarker recombination fraction
is 0.1. Power was assessed at the 5% level.

) equally frequent alleles. We found that, for the test.875
of linkage equilibrium, the power for two and four
equally frequent alleles is only slightly lower than for
eight equally frequent alleles, but the difference in power
is more pronounced for the test of complete LD (fig. 5).
The differences between power for 2, 4, and 10 flanking
markers when flanking-marker H was �0.75 were mod-
est (data not shown), suggesting that even just two highly
polymorphic flanking markers may provide substantial
power to detect disease-SNP LD. The utility of even two
flanking markers is especially helpful when linkage data
are not available and additional genotyping is required.

We also evaluated the impact of flanking-marker den-
sities on power (fig. 6) by simulating data sets using a
map of 10 flanking markers, each with four equally fre-
quent alleles ( ). Clearly, denser markers giveH p .75
greater power, but the increment of power is not sub-
stantial for the range of densities we considered. In prac-
tice, having flanking markers within ∼10 cM should be
enough for the initial evaluation of a candidate SNP.

Comparison of GIST and STEPC

Li et al. (2004) examined whether a SNP might ac-
count in part for an observed linkage signal by testing
for a correlation between SNP genotypes and family-
specific NPL scores. Their method is implemented in the
software package GIST. Their simulations show that
GIST is useful for identifying SNPs that are in LD with

the disease locus and suggest that GIST could also iden-
tify associated SNPs in the absence of evidence for link-
age. We compared our test of with GIST (table2r p 0
6). We assessed the significance of at the 5% signif-TLE

icance level by comparing the observed statistic with the
empirical null distribution simulated in accordance with
the resampling procedure described in the “Methods”
section. Results are based on 500 replicates of 500
ASPs. For each replicate, the empirical null distribution
of was obtained by resampling 1,000 times. TheTLE

results indicate that our test has greater power than
GIST for the models we considered. For example, our
test has 89% power to reject linkage equilibrium when

for an additive model with and2r p .67 p p p p 0.15D A

at the 5% significance level, whereas GIST hasl p 1.1s

76% power.
Sun et al. (2002) examined whether a SNP could fully

explain the observed linkage signal and implemented
their approach in the software package STEPC. The
method of Sun et al. (2002) is based on the observation
that if a SNP is the only variant in the region that in-
fluences the trait, then conditional on the affected rel-
atives’ SNP genotypes, there should be no increased IBD
sharing in the region among affected individuals. We
compared our test of with STEPC (table 6) by2r p 1
using 500 replicates of 500 ASPs. Again, the significance
of was assessed empirically using the empirical nullTLD

distribution simulation procedure for described inTLD
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Figure 6 Impact of intermarker recombination of flanking markers. Results are based on 2,000 replicates of 500 ASPs simulated under
an additive model with population disease prevalence K p 2%, allele frequency , and sibling recurrence-risk ratiosp p p p 0.15 l p 1.1D A s

(A) and 1.3 (B). Data were simulated using 10 flanking markers, each with four equally frequent alleles. Power was assessed at the 5% level.

the “Methods” section. The two tests have nearly iden-
tical performance when . However, the power of2r p 0
STEPC drops quickly as increases, so that, when SNPs2r
are in moderate LD with the putative disease locus, our
method has better resolving power and thus should iden-
tify a smaller set of potential explanatory SNPs.

Discussion

We have developed a statistical framework that quan-
tifies the relationship between SNP alleles and unobser-
ved trait alleles through joint modeling of linkage and
association by use of ASP data. We described a para-
metric likelihood of the marker genotypes conditional
on the trait data under the assumption that there is a
single disease-causing variant in the region. Our unified
likelihood framework naturally leads to two tests: (1) a
test of whether a candidate SNP is in linkage equilibrium
with the putative disease locus and (2) a test of whether
the candidate SNP is in complete LD with the putative
disease locus. In the first case, the rejection of linkage
equilibrium suggests that the candidate SNP is associated
with the putative disease locus and that the candidate
SNP or one in LD with it accounts, at least in part, for
the observed linkage signal. In the second case, the re-
jection of complete LD indicates that the candidate SNP
cannot fully account for the linkage signal. Our method
also yields estimates of interesting genetic parameters,
including the disease-locus and SNP-allele frequencies,

the locus-specific risk ratio ls, and the degree of disease-
SNP LD. Our method uses ASPs and does not require
parental genotypes. This feature is important for late-
onset diseases, for which parents may not be available
to study.

Simulation studies show that our method has good
power to detect disease-SNP association, even when the
sibling recurrence-risk ratio is as low as 1.1. We com-
pared our test of linkage equilibrium with GIST (Li et
al. 2004) and found our test to be more powerful in
the models that we considered. The increase of power
may come from the fact that our method is model-based,
whereas GIST is nonparametric and is based on model-
free NPL scores. Like GIST, the power of our test of
linkage equilibrium does not depend on the overall
strength of the linkage signal. Evidence of disease-SNP
LD from our test also reveals underlying linkage, which
might be overwhelmed by sampling variation in IBD
estimates. This feature makes our method a useful tool
for detecting linkage as well as association. We also
compared our test of complete LD with STEPC (Sun et
al. 2002) and found that the two tests have similar
performance under linkage equilibrium, but our test has
greater power to distinguish those SNPs that are in
strong but incomplete LD with the putative disease
locus.

In contrast to previous approaches (Sun et al. 2002;
Li et al. 2004), our method yields disease-SNP haplo-
type-frequency estimates in the general population with-
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Table 6

Comparisons with GIST and STEPC

, TEST, AND MODELls

2r p 0 2r p .33 2r p .67 2r p 1

TLE TLD GIST STEPC TLE TLD GIST STEPC TLE TLD GIST STEPC TLE TLD GIST STEPC

1.1:
Linkage equilibrium:

Dominant 5 … 5 … 78 … 47 … 100 … 75 … 100 … 90 …
Recessive 6 … 5 … 100 … 95 … 100 … 100 … 100 … 100 …
Additive 5 … 5 … 54 … 46 … 89 … 76 … 98 … 87 …

1.3:
Complete LD:

Dominant … 64 … 66 … 55 … 22 … 32 … 15 … 5 … 6
Recessive … 97 … 98 … 82 … 62 … 57 … 27 … 5 … 5
Additive … 56 … 58 … 44 … 26 … 24 … 12 … 6 … 5

NOTE.—Results are based on 500 replicates of 500 ASPs. All models have population disease prevalence K p 2% and allele frequency
. Significance of and is assessed by comparing the observed statistics with the empirical null distributions generated inp p p p 0.15 T TD A LE LD

accordance with the resampling procedures described in the “Methods” section. Power is assessed at the 5% level.

out the requirement of a separate control sample. These
quantities lead to the estimate of disease-SNP , a mea-2r
sure that can be used to quantify the degree to which
a linkage signal is explained by a candidate SNP. Our
estimate of also provides information about the dis-2r
tance between the candidate SNP and the unobserved
disease locus and helps refine the region in which further
candidate SNPs should be examined. The disease-allele
frequency estimate may be helpful to researchers in se-
lecting additional nearby SNPs, by focusing on those
with frequencies close to the predicted disease-allele fre-
quency. This approach becomes increasingly useful as

increases.2r
Our tests benefit from genotype information on flank-

ing markers, which are available in many gene map-
ping studies. Our results show that even two highly
polymorphic flanking markers can provide nearly as
much information as many more markers for this pur-
pose. Compared with other family-based association
tests and a previous joint model of linkage and asso-
ciation (Göring and Terwilliger 2000), our model has
the attractive feature of incorporating flanking-marker
information when it is available. An alternative joint
model of linkage and association was developed in-
dependently by Cantor et al. (2005). In contrast to our
approach, theirs includes recombination as an addi-
tional parameter and fixes disease model parameters,
including penetrances and the disease-allele frequency.
Like the approach of Göring and Terwilliger (2000), the
model of Cantor et al. (2005) does not readily incor-
porate genotype information contributed by flanking
markers.

Since the test of linkage equilibrium does not depend
strongly on the overall evidence of linkage, flanking-
marker heterozygosity has less impact on power for this
test than for the test of complete LD, which is highly
dependent on the strength of linkage evidence. We as-

sume linkage equilibrium between the flanking markers
and the candidate SNP in our likelihood calculation.
For flanking markers that are close together, they may
show strong evidence of LD. For such data, we rec-
ommend selecting a small number of flanking markers
in linkage equilibrium so that the linkage equilibrium
assumption is satisfied.

The likelihood framework described in this article is
applicable to dichotomous traits only. However, many
disease-related traits—for instance, blood pressure and
cholesterol level—are continuous in nature. Dichoto-
mization can result in a loss of power of the corre-
sponding tests. Fulker et al. (1999) developed a method
that tests for linkage while simultaneously modeling
allelic association by use of the variance-components
framework. Their method was further extended to gen-
eral pedigrees (Abecasis et al. 2000a; Cardon and
Abecasis 2000). Attenuation of evidence for linkage
when association to SNP alleles is modeled suggests that
the candidate SNP accounts for linkage and provides
information about unobserved trait alleles. Although
these methods provide bounds on disease-allele fre-
quencies and disease-marker LD (Cardon and Abecasis
2000), they provide no direct estimate of these quan-
tities. To address the same question for quantitative
traits, we plan to develop a statistical framework that
summarizes the available information by a retrospective
likelihood, with the putative trait locus and the SNP
haplotype frequencies as parameters.

In most gene mapping studies, the ASPs are likely to
be selected from a sample that was originally collected
for linkage analysis and for which flanking-marker ge-
notypes are available. Our likelihood calculation nat-
urally allows for missing genotypes at the candidate
SNP. Given fixed genotyping resources, researchers may
initially type many SNPs in only one sib per ASP. This
approach halves the genotyping costs, and additional
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Figure 7 Comparison of empirical null distributions. Results are based on 2,000 replicates of 500 ASPs. All models have population
disease prevalence K p 2% and allele frequency . The solid line in each plot is the density of the empirical null distributionp p p p 0.15D A

simulated using true parameter values of the disease model. Dashed lines are density plots of the empirical null distributions generated using
the resampling procedures described in the “Methods” section. The empirical null distribution was generated for each level of disease-SNP LD.

simulations suggested that even one sib per ASP can
provide meaningful information on whether a candidate
SNP is associated with the disease locus. This suggests
that, for an initial screen of SNPs, it may be cost effective
to genotype only one sib per ASP, with genotyping of
the other sibs done when a candidate SNP shows at
least suggestive evidence of association.

In our simulations, we assessed the empirical power
of and by simulating the null distributions gen-T TLE LD

erated using the true parameter values. For real data
sets, these values are unknown, and the null distribu-
tions must be generated using the estimated parameter
values. We described simulation procedures to obtain
the empirical null distributions. For the test of linkage
equilibrium, we simulate the SNP genotypes for each
ASP, conditional on their flanking-marker genotypes,
and leave the flanking-marker genotypes unchanged
from their observed values. For the test of complete LD,
we leave the SNP genotypes unchanged and simulate
the flanking-marker genotypes, conditional on the ob-
served SNP genotypes, to remove excess sharing ex-
plained by the flanking markers. The difference in these
two simulation procedures is due to the inherent dif-
ference of the two tests. Under linkage equilibrium, the
candidate SNP provides no information on the unob-
served disease locus, and the SNP genotypes can be sam-
pled by gene-dropping simulations. In contrast, under
complete LD, the candidate SNP is statistically identical
to the unobserved disease locus, and the SNP genotypes
need to be preserved to retain complete information on
the unobserved disease locus.

We examined the performance of our null distribution
simulation procedures and found that the simulated null
distributions for both tests agree well with those gen-
erated in accordance with their true parameter values
at all levels of disease-SNP LD and that both simulation
procedures give correct type I errors (fig. 7). Evaluation
of the significance of our tests by use of their simulated
null distributions can be computationally intensive in
practice, especially when the sample size is large. For
an initial screen of SNPs, one might choose to evaluate
the significance of the linkage equilibrium test empiri-
cally only if (at the 5% significance level),T � 3.84LE

since approximates the lower bound for the asymp-2x1

totic distribution of , and one may test whether aTLE

candidate SNP is potentially causal only if it shows sig-
nificant evidence of association.

We described our likelihood framework in the context
of ASPs, but our method can be readily extended to

other study designs. We are extending our method to
sibships of arbitrary size and disease-phenotype config-
uration and to include unrelated affected or unaffected
individuals. Unaffected individuals are more represen-
tative of the general population and may help to infer
the underlying genetic model parameters. We expect the
power of our test of linkage equilibrium to increase
when unrelated unaffected individuals are added to the
study.

Despite its flexibility, our method has limitations.
Like all statistical methods, ours is unable to distinguish
the true disease causal variant from an allele that is in
complete LD with it. We assume that there is a single
disease causal variant in the candidate region. However,
many complex diseases are influenced by multiple ge-
netic variants and are possibly the result of gene-gene
and gene-environment interactions. Individual variants
may be neither necessary nor sufficient to explain the
effect of a single locus on disease susceptibility—for
example, three independent SNPs, a frameshift variant,
and two missense variants of NOD2 were identified as
determining susceptibility to inflammatory bowel dis-
ease (Hugot et al. 2001). If only one causal variant is
assumed, then we expect our model to indicate that each
variant is associated with the underlying disease loci but
none is causal (i.e., for all, ). For complex20 ! r ! 1
diseases that are influenced by multiple genetic variants,
fitting the data under the assumption of a single-locus
disease model is equivalent to testing the marginal effect
of a specific locus. If the marginal effect of that locus
is modest, then we may have limited power to detect
association. For those cases, it might be desirable to
develop a method that allows the analysis of two-locus
or even multilocus disease models.

In summary, we have developed a unified likelihood
framework to estimate useful genetic parameters and to
test for both linkage equilibrium and complete LD be-
tween a candidate SNP and the putative disease locus.
Results from these two tests complement each other in
answering the question of whether the candidate SNP
can account in part or in full for the observed linkage
signal. An estimate of the disease-SNP LD provides a
measure to quantify the degree of contribution of the
candidate SNP to linkage evidence. Together with the
disease locus and the SNP-allele frequency estimates,
our method will be valuable in helping researchers to
evaluate the role of a candidate SNP in disease suscep-
tibility and to fine-map disease genes. We have imple-
mented our method in a C�� program, which can be
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