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Efficient Study Designs for Test of Genetic Association Using Sibship Data
and Unrelated Cases and Controls
Mingyao Li,1,2 Michael Boehnke,2 and Gonçalo R. Abecasis2

1Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia; and 2Department of
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Linkage mapping of complex diseases is often followed by association studies between phenotypes and marker
genotypes through use of case-control or family-based designs. Given fixed genotyping resources, it is important to
know which study designs are the most efficient. To address this problem, we extended the likelihood-based method
of Li et al., which assesses whether there is linkage disequilibrium between a disease locus and a SNP, to accommodate
sibships of arbitrary size and disease-phenotype configuration. A key advantage of our method is the ability to
combine data from different family structures. We consider scenarios for which genotypes are available for unrelated
cases, affected sib pairs (ASPs), or only one sibling per ASP. We construct designs that use cases only and others
that use unaffected siblings or unrelated unaffected individuals as controls. Different combinations of cases and
controls result in seven study designs. We compare the efficiency of these designs when the number of individuals
to be genotyped is fixed. Our results suggest that (1) when the disease is influenced by a single gene, the one sibling
per ASP–control design is the most efficient, followed by the ASP-control design, and familial cases contribute more
association information than singleton cases; (2) when the disease is influenced by multiple genes, familial cases
provide more association information than singleton cases, unless the effect of the locus being tested is much smaller
than at least one other untested disease locus; and (3) the case-control design can be useful for detecting genes with
small effect in the presence of genes with much larger effect. Our findings will be helpful for researchers designing
and analyzing complex disease-association studies and will facilitate genotyping resource allocation.
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Association analysis provides a powerful tool for iden-
tifying genetic variants that predispose to complex dis-
eases. Association analysis with use of genetic markers
(such as SNPs) relies on the presence of linkage disequi-
librium (LD), which occurs when specific alleles at the
disease and marker loci appear together in gametes more
frequently than expected by chance. With the recent
availability of high-throughput SNP genotyping and de-
creasing genotyping costs, association studies with use
of SNPs are beginning to be conducted genomewide.1,2

Such analyses have been facilitated by progress on the
International HapMap Project,3,4 which cataloged and
genotyped millions of SNPs, allowing informative tag-
ging SNPs to be selected for different populations. Ge-
nomewide association studies typically involve hundreds
or thousands of individuals and, since genotyping on
such a large scale is still expensive, it is important to
choose efficient study designs.

In gene-mapping studies, affected sib pairs (ASPs)
or multiplex affected sibships are often collected for
linkage analyses. Although these individuals may be
reused in follow-up association studies, this is not al-
ways done. Traditionally, association-mapping studies
with the case-control design have been used to test
for disease-marker association by selecting one af-

fected sibling per sibship, to form the case group, and
comparing the alleles or genotype frequencies with a
random sample of unaffected individuals. It has been
shown that power can be substantially increased by
including families with more affected siblings5–7 in as-
sociation studies. The increase of power is due to the
enrichment of disease-predisposing alleles in affected
sibships; this, in turn, leads to improved power to
detect genetic association because of larger allele-fre-
quency differences between cases and controls.

Efficient use of data sets that include related individ-
uals in association studies requires a unified statistical
framework that allows the joint analysis of all available
sampling units. In this article, we extend the association
test proposed by Li et al.8 to the analysis of sibships of
arbitrary size and disease-phenotype configuration and
to accommodate parental genotypes, when available. Our
method allows the analysis of data containing mixed
types of sampling units that are based on a unified retro-
spective likelihood framework and therefore can eval-
uate evidence of disease-marker association on the basis
of different sampling units, ranging from unselected un-
related individuals to large sibships. We consider sce-
narios for which genotypes are available for unrelated
cases, ASPs, or only one sibling per ASP. We construct
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Figure 1 Association study designs. The black arrows denote individuals to be genotyped at the candidate SNP. The number of individuals
to be genotyped at the SNP is fixed at 1,000 for each study design.

designs that use affected individuals only and others that
use unaffected siblings or unrelated unaffected individ-
uals as controls. Using our unified likelihood framework,
we compare efficiency of these study designs when the
number of individuals to be genotyped is fixed.

As noted elsewhere by Risch,6 we show that designs
with unrelated controls are more powerful than are de-
signs with family-based controls. Our results also suggest
that, for diseases that are influenced by multiple genes,
familial cases provide more association information than
do singleton cases, unless the effect of the test locus is
much smaller than at least one other untested disease
locus. Similar phenomena have been observed by Risch9

for single major-locus models with an additive polygenic
background and by Howson et al.10 for certain two-locus
models. Further, we show that the case-control design
can be useful for detecting genes with small effect in the
presence of genes with much larger effect.

Methods

We consider the problem of disease-marker association analy-
sis with mixed types of sampling units. Our goals are to develop
a unified likelihood framework that allows the joint analysis
of all available data and to compare efficiency of different study
designs for testing association between disease and a candidate
SNP, given fixed genotyping resources. We discuss the impact
of phenotyping cost in the “Discussion” section.

Assumptions and Definitions

We assume there is a set of sibships genotyped at a candidate
SNP and, optionally, flanking markers. We assume theM � 0
SNP, with alleles A and a (with frequencies and ), is com-p pA a

pletely linked (recombination fraction ) to a diallelic dis-v p 0
ease locus, with disease-predisposing allele D and alternate
allele d (with frequencies and ). We wish to evaluate evi-p pD d

dence of association at the candidate SNP by modeling the

disease-SNP haplotypes DA, Da, dA, and da (with frequencies
pDA, pDa, pdA, and pda, respectively) and the penetrances f pg

for disease genotypes . As shownP(affectedFg) g � {dd, Dd, DD}
later, unrelated individuals do not allow the estimation of all
these independent parameters. In samples that include only
unrelated individuals, we assume that the disease and SNP loci
are in complete LD ( ), so that their allele frequencies2r p 1
are identical. The assumption that results in an iden-2r p 1
tifiable model but no loss of statistical efficiency, since we can
still extract maximum information from the available data.

By definition, the population prevalence of the disease
, and the genotype relative risk2 2K p f p � 2f p p � f pdd d Dd d D DD D

for . We allow LD between the can-(GRR) pf /f g � {Dd,DD}g dd

didate SNP and the unobserved disease alleles but assume link-
age equilibrium between the flanking markers and the super-
locus formed by combining the disease and SNP loci. We assume
Hardy-Weinberg equilibrium in the general population for all
markers, including the superlocus. We further assume that the
disease phenotypes of the siblings are independent, given their
genotypes at the disease locus, and that there is a single disease
causal variant in the region. We investigate the impact of mul-
tiple disease variants in the “Simulations” section.

For a sibship with s siblings, let

X p (X ,…,X ,X ,X ,…,X )1 k SNP k�1 M

be the observed unordered marker genotypes, Y be the disease
phenotypes, and G be the disease-SNP haplo-genotypes. Let

be the recombination fraction between markers m andvm

( ). The inheritance pattern at marker mm � 1 1 � m � M � 1
is completely described by a binary inheritance vector ofvm

length ,11,12 whose entries indicate the outcome of the pa-2s
ternal and maternal meioses for the s siblings in the sibship.
Let and denote the inheritance vectors at the diseasev vD SNP

locus and the candidate SNP, respectively. Complete linkage
between the disease and SNP loci implies . For easev { vD SNP

of computation, we assume there is no genetic interference, so
that { } forms a hidden Markov chain.vm
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Table 1

Parameters and Constraints for Different Sampling Units

SAMPLING UNITS

GENERAL MODEL ( )20 � r � 1 LINKAGE EQUILIBRIUM MODEL ( )2r p 0

Parameters Constraints Parameters Constraints

Sibship ( or mixed sampling units)s � 3 {f ,f ,f ,p ,p ,p }dd Dd DD DA Da dA ;0 � f ,f ,f � 1 0 �dd Dd DD

;p ,p ,p � 1 0 � p �DA Da dA DA

p � p � 1Da dA

{f ,f ,f ,p ,p }dd Dd DD D A ;0 � f ,f ,f � 1 0 ! p ,p ! 1dd Dd DD D A

Sib pair ( )s p 2 {f ,f ,f ,p ,p ,p }dd Dd DD DA Da dA ;0 � f ,f ,f � 1 0 �dd Dd DD

;p ,p ,p � 1 0 � p �DA Da dA DA

p � p � 1Da dA

{z ,z ,p }0 1 A 0 � z � 0.5,0 � z � 0.5z1 0 1

;(ASP) 0.5 � z � 2z ,0 �1 0

;z � z � 1 (DSP) 0 ! p ! 10 1 A

Case-control {f ,f ,f ,p }dd Dd DD A ;0 � f ,f ,f � 1 0 ! p ! 1dd Dd DD A {p }A 0 ! p ! 1A

Case only {P(AAFcase),P(AaFcase)} ;0 � P(AAFcase),P(AaFcase) � 1
0 ! P(AAFcase) �
P(AaFcase) ! 1

{p }A 0 ! p ! 1A

NOTE.—Disease penetrances fdd, fDd, and fDD are assumed to be not all equal. , 1, 2, is the probability of sharing i alleles identical by decent for a sib pair.z ,i p 0i

Table 2

Characteristics of the Simulated Single-Locus
Disease Models When l p 1.02s

Model and fdd fDD pD AFa GRRb

Dominant:
.045 .071 .1 .098 1.57
.039 .060 .3 .214 1.53
.031 .056 .5 .380 1.82
.013 .054 .7 .744 4.19

Recessive:
.049 .179 .1 .026 3.68
.046 .087 .3 .074 1.88
.044 .069 .5 .126 1.58
.040 .061 .7 .205 1.53

Additive:
.045 .092 .1 .094 1.52, 2.04
.041 .072 .3 .186 1.38, 1.76
.036 .064 .5 .282 1.39, 1.79
.028 .059 .7 .430 1.54, 2.09

NOTE.—Population disease prevalence K was fixed
at 5%.

a AF p attributable fraction.
b for .GRR p f /f g � {Dd,DD}g dd

Conditional Probability of Marker Data, Given Disease
Phenotypes for a Sibship with s Siblings

We wish to evaluate , the conditional probability ofP(XFY)
marker genotypes X, given disease phenotypes Y for a sibship
with s siblings. By the law of the total probability,

P(XFY) p P(X ,…,X ,G)P(YFG)/P(Y) , (1)� 1 M
G∼XSNP

where the summation is taken over all disease-SNP haplogen-
otypes that are consistent with the observed SNP genotypes.
Summing over all possible inheritance vectors at the disease locus
and applying Baum’s13 forward and backward algorithms,

P(X ,…,X ,G)1 M

p P(X ,…,X Fv )P(X ,…,X Fv )P(G,v )� 1 k k�1 MD D D
vD

p L (v )P(v Fv )� � k k k D[ ]
v vD k

# R (v )P(v Fv ) P(GFv )P(v ) ,� k�1 k�1 k�1 D D D[ ]
vk�1

(2)

where k and are flanking markers on the left and rightk � 1
side of the candidate SNP. The summation over all possi-
ble inheritance vectors allows the handling of incomplete in-
heritance information and phase ambiguity by incorporating
prior probabilities of the inheritance vectors. At any marker
m ,(1 � m � M)

L (v ) p P(X ,…,X Fv )m 1 mm m

p L (v )P(X Fv )P(v Fv ) ,� m�1 mm�1 m m�1 m
vm�1

and

R (v ) p P(X ,…,X Fv )m m Mm m

p R (v )P(X Fv )P(v Fv ) .� m�1 mm�1 m m�1 m
vm�1

The calculation of equation (2) requires three probabilities:

(1) the prior probability of inheritance vector , (2) the inher-vD

itance vector transition probability between two consecutive
markers, and (3) the conditional probability of marker geno-
types, given the inheritance vector at that marker. Clearly, the
prior probability .�2sP(v ) p 2D

The transition probability between inheritance vectors at
markers m and can be obtained from the transition ma-m � 1
trix, which is expressed as the Kronecker power of tran-2 # 2
sition matrices corresponding to transitions at each of the 2s
meioses,

�2s1 � v vm mT(v ) p [P(v Fv )] p .m [ ]m�1 m v 1 � vm m

For example, for a sib pair,

{ }v � (0,0,0,0),(0,0,0,1),(0,0,1,0),…,(1,1,1,1)m
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Figure 2 Histograms of ranks for different study designs. Results are based on 2,000 replicates of the corresponding sampling units for
each study design. All models have disease prevalence of and sibling recurrence risk ratio of . Power is assessed at the 1%K p 5% l p 1.02s

level. For each disease model in table 2 and at each level of disease-SNP LD ( , .50, .75, and 1), the seven study designs are ranked by2r p .25
estimated power.

and

3P[v p (0,0,0,0)Fv p (0,0,0,1)] p (1 � v ) v .m mm�1 m

Let and represent the ordered genotypes of thedad momO Om m

father and the mother at marker m. In ordered genotypes, the
maternal allele always precedes the paternal allele. Although
observed genotypes are typically unordered, summing over or-
dered genotypes is computationally convenient, because, taken
together, ordered genotypes for the founders and the inheri-
tance vector specify the genotypes of all individuals in the ped-
igree. Thus, the conditional probability of sibship genotype

, given inheritance vector , can be calculated asX vm m

dad mom dad momP(X F v ) p P(X FO ,O ,v )P(O )P(O ) ,��m m m m m mm m
dad momO Om m

where takes the value of 1 if the sibship’sdad momP(X FO ,O ,v )m m m m

genotype data are consistent with the ordered parental ge-Xm

notypes and and the inheritance vector , and 0dad momO O vm m m

otherwise. The summation is taken over all ordered parental
genotypes. can be calculated in a similar fashion, byP(GFv )G

regarding each haplogenotype as a genotype of the superlocus
formed by combining the disease and SNP loci.

Recursive calculation of and with use of theseL (v ) R (v )m mm m

three probabilities allows equation (2) to be evaluated in a
manner linear in the number of marker loci M. Equation (2)

is an extension of the retrospective likelihood calculation for
ASPs described by Li et al.8 Here, the sibship size can be 12,
and siblings can be either affected or unaffected. Our likeli-
hood calculation easily allows for missing genotypes. For ex-
ample, to accommodate sibships in which only a subset of the
siblings is genotyped at the candidate SNP, we sum over all
possible SNP genotypes for those siblings of known disease
status but with missing SNP genotypes. It is essential to include
all these members, because siblings with known phenotypes
but missing genotypes contribute association information.

Our calculation can be readily extended to accommodate
parental genotypes. Following the derivation of equation (2),
the critical part in the calculation is the conditional probability
of marker genotypes for the siblings and their parents, given
the inheritance vector at a particular marker. Let anddadXm

represent the observed unordered parental genotypes atmomXm

marker m. Then the conditional probability of the observed
genotypes given the inheritance vector at marker m is

dad momP(X ,X ,X Fv )m m m m

dad mom dad momp P(X FO ,O ,v )P(O )P(O ) ,� � m m m m mm
dad dad mom momO ∼X O ∼Xm m m m

where the summation is taken over all ordered parental geno-
types that are consistent with the observed unordered parental
genotypes. This extension enables us to analyze nuclear fam-
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Table 3

Power (%) Comparison of the ASP-Control Design and the One Sibling per ASP–Control Design for a Fixed Number
of Sibships

and 2p p p rD A

DOMINANT ADDITIVE RECESSIVE

1/ASP-Control ASP-Control 1/ASP-Control ASP-Control 1/ASP-Control ASP-Control

.1:
.25 22 25 23 28 22 31
.50 50 57 48 59 59 76
.75 74 80 71 81 85 94
1.00 86 92 85 90 92 99

.3:
.25 18 23 21 24 18 26
.50 45 58 50 53 51 65
.75 74 85 70 80 81 91
1.00 88 96 84 91 94 99

.5:
.25 16 21 20 24 18 24
.50 47 59 49 55 49 58
.75 79 90 72 80 75 85
1.00 94 99 87 92 91 97

.7:
.25 9 19 19 27 18 26
.50 36 60 47 60 49 59
.75 77 94 70 83 75 85
1.00 98 100 86 95 90 96

NOTE.—Results are based on 2,000 replicates of 250 ASPs and 500 controls (1,000 SNP genotypes) and 250 cases
(one sibling per ASP) and 500 controls (750 SNP genotypes). All models have disease prevalence of and siblingK p 5%
recurrence risk ratio of . Power is assessed at the 1% level.l p 1.02s

ilies with genotyped parents, including parent-affected off-
spring trios, which are the basic sampling units used by the
transmission/disequilibrium test.14

Under the assumption that the disease phenotypes are inde-
pendent given the genotypes at the disease locus, is theP(YFG)
product of simple functions of penetrances. An affected sibling
j ( ) with disease-SNP haplo-genotype contributes1 � j � s Gj

a term , and an unaffected sibling j contributes a termf 1 �Gj

. By the law of the total probability, the probability of thefGj

disease phenotypes for the sibship

[ ]P(Y) p P(YFG) P(GFv )P(v ) .� � G G{ }
G vG

Substituting equation (2), , and into equation (1),P(YFG) P(Y)
we obtain the conditional probability for the sibship P(XFY)
as a function of model parameters .{f ,f ,f ,p ,p ,p }dd Dd DD DA Da dA

In the calculation of and , we assume that theP(YFG) P(Y)
disease statuses of the siblings are conditionally independent,
given their genotypes at the disease locus. This assumption is
exactly true only when there are no other genetic or environ-
mental risk factors shared among the siblings. If the disease is
influenced by multiple disease variants, then the calculation will
depend on genotypes at the other disease loci as well. For ex-

ample, if the disease is influenced by two unlinked disease loci,
then

P(Y) p��
G G1 2

#P(YFG ,G ) P(G Fv )P(v ) P(G Fv )P(v ) ,[� ][� ]1 2 1 2G G G G1 1 2 2{ }
v vG G1 2

where subscripts 1 and 2 denote the two unlinked disease loci.

Conditional Probability of Marker Data, Given Disease
Phenotype for a Single Individual

In principle, equation (1) can be applied to singleton indi-
viduals who can be regarded as sibships with one sibling. How-
ever, data sets containing solely unrelated individuals do not
allow the estimation of all our model parameters. In this case,
we assume that the disease and SNP loci are in complete LD,
so that , and we reparameterize our model. For case-p p pD A

control data,

f P(X ) X SNPSNP , if Y p case K
P(X FY) p , SNP (1 � f )P(X )X SNPSNP , if Y p control

1 � K 
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Table 4

Improvement of Power (%) by Including Flanking Markers

DESIGN, , AND 2p p p rD A

DOMINANT ADDITIVE RECESSIVE

SNP Only
SNP and

Flanking Markers SNP Only
SNP and

Flanking Markers SNP Only
SNP and

Flanking Markers

ASP:
.1:

.25 2 9 1 6 31 46

.50 5 20 1 12 87 92

.75 14 35 1 18 89 100
1.00 24 55 2 27 100 100

.3:
.25 4 6 1 3 11 14
.50 17 19 1 4 54 56
.75 47 51 1 8 91 93
1.00 77 80 2 10 100 100

One sibling per ASP:
.1:

.25 2 8 1 5 54 61

.50 7 21 2 10 98 99

.75 21 43 3 15 100 100
1.00 39 65 4 22 100 100

.3:
.25 6 8 1 4 18 21
.50 30 34 1 7 71 74
.75 68 72 3 11 97 98
1.00 93 95 4 16 100 100

NOTE.—Results are based on 2,000 replicates of 500 ASPs and 1,000 cases (one sibling per ASP). All models have disease
prevalence of K p 5%, sibling recurrence risk ratio of . Data were simulated using 10 flanking markers, each with fourl p 1.02s

equally frequent alleles and intermarker recombination fraction 0.1. For the one sibling per ASP design, both siblings have genotypes
on flanking markers. Power is assessed at the 1% level.

which is a function of . For a sample of unrelated{f ,f ,f ,p }dd Dd DD A

cases, is simply a function of the two SNP genotypeP(X FY)SNP

frequencies, and . For studies that in-P(AAFcase) P(AaFcase)
volve only unrelated individuals, flanking markers do not con-
tribute information on association; therefore, we need to con-
sider only the SNP genotypes. It is worth noting that, for SNPs
that are in incomplete LD with the disease locus, the genetic
effect will be underestimated; however, there is no loss of ef-
ficiency for the association test.

Pooling across Different Sampling Units

A key advantage of our likelihood calculation is that it al-
lows the joint analysis of different sampling units in a unified
statistical framework, which leads to more efficient use of the
available data. The retrospective likelihood for data that con-
tain N independent sibships, which may be of different sizes
and disease phenotype configurations, is

N

(i) (i)L p P(X FY ) . (3)�
ip1

Here, we choose to use a retrospective likelihood, since the
sibships are ascertained through disease status. Using a retro-
spective likelihood avoids the problem of ascertainment bias
and provides parameter estimates that are valid for the general
population.15,16 In addition, it ensures that our test remains

valid even if there are additional genetic or environmental fac-
tors that induce correlation between family members.

Test of Association

We wish to evaluate whether a SNP is associated with the
putative disease locus. Under the null hypothesis of no asso-
ciation, the SNP and the disease locus are in linkage equilib-
rium, and the disease-SNP haplotype frequencies are the prod-
uct of the corresponding disease and SNP allele frequencies
(for example, ). In this case, parameters that needp p p pDA D A

to be estimated are , and we set{f ,f ,f ,p ,p }dd Dd DD D A

2 2 [ ]r p (p � p p ) / p (1 � p )p (1 � p ) p0 .DA D A D D A A

Under the alternative hypothesis, we maximize a total of six
parameters . For data including only{f ,f ,f ,p ,p ,p }dd Dd DD DA Da dA

ASPs or only unrelated individuals, these parameters are not
all identifiable, and we reparameterize the likelihood as de-
scribed by Li et al.8 or maximize a subset of the parameters
as detailed in table 1. We perform this maximization using a
simplex algorithm,17 an optimization method that does not
require derivatives.

Following Li et al.,8 we use a likelihood-ratio statistic to test
for association. We compare the likelihood maximized under
the general model ( ), , with the likelihood max-2 ˆ0 � r � 1 LGM

imized under the null model ( ), , using the likelihood-2 ˆr p 0 LLE
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Table 5

Power (%) Comparison with Other Tests of Association

DESIGN,
,p p pD A

AND 2r

DOMINANT ADDITIVE RECESSIVE

TLE
2x2 TLE

2x2 TLE
2x2

Case-control:
.1:

.25 12 10 8 9 10 5

.50 26 25 22 25 32 15

.75 43 42 41 44 63 32
1.00 63 62 55 57 86 52

.3:
.25 12 11 14 13 12 7
.50 35 32 28 26 37 22
.75 60 53 50 48 68 44
1.00 79 70 67 65 89 68

TLE R & T TLE R & T TLE R & T

ASP-control:
.1

.25 26 34 31 37 31 19

.50 58 66 62 70 76 43

.75 81 84 83 87 93 60
1.00 93 93 91 93 99 70

.3:
.25 26 29 25 32 26 26
.50 59 61 54 63 65 54
.75 86 83 81 86 91 78
1.00 96 93 91 93 99 86

NOTE.—Results are based on 2,000 replicate data sets. All mod-
els have disease prevalence of and sibling recurrence riskK p 5%
ratio of . R & T p Risch and Teng’s5 test. Power isl p 1.02s

assessed at the 1% level. Table 6

Power (%) Comparison with Complete Data and Partial Data

q AND

MODEL

WITH ALL INDIVIDUALS

WITH SUBSET OF

UNRELATED INDIVIDUALS

No. of Genotypes aTLE No. of Genotypes bTLE

c:1
2

Dominant 600 44 300 31
Recessive 600 80 300 49
Additive 600 22 300 11

d:2
3

Dominant 600 54 400 39
Recessive 600 79 400 54
Additive 600 41 400 21

e:3
4

Dominant 600 54 450 41
Recessive 600 76 450 55
Additive 600 42 450 24

a Power is estimated using all available data.
b Power is estimated using one sibling per ASP and unrelated cases

as the case group and the unaffected sibling per DSP and unrelated
controls as the control group. q is the proportion of individuals used
in the analysis for whom there was partial data. Results are based on
2,000 replicate data sets with population disease prevalence of K p

, sibling recurrence-risk ratio of , allele frequency of5% l p 1.02s

, and . Power is assessed at the 1% level.2p p p p 0.3 r p 1D A
c Sampling units: 150 ASPs and 150 DSPs.
d Sampling units: ASPs, 100 DSPs, 100 cases, and 100 controls.
e Sampling units: 75 ASPs, 75 DSPs, 150 cases, and 150 controls.

ratio statistic . Parameters associ-ˆ ˆT p 2[ln (L ) � ln (L )]LE GM LE

ated with each model for the different sampling units and the
corresponding parameter constraints are summarized in table
1. For data sets that contain only unrelated cases and controls,
our association test is similar to the unconstrained genotype
test proposed by Thompson et al.,18 except that we do not
assume known disease prevalence. Our test is also similar to
the goodness-of-fit test proposed by Wittke-Thompson et al.19

In principle, the asymptotic distribution of under theTLE

null hypothesis can be approximated by mixture of distri-2x

butions,20 but we have not derived the degrees of freedom and
mixing parameters because of the complexity of parameter
constraints and boundaries. Instead, we assess significance of
the test statistic empirically by simulating marker genotypes
under the null hypothesis and comparing the observed statistic
with the simulated null distribution.

Under the null hypothesis, we sample SNP genotypes for a
sibship conditional on their observed flanking-marker genotypes
and parameter estimates for the linkage equilibrium model.
We leave flanking-marker genotypes unchanged from their ob-
served values. For a single individual, we sample the SNP ge-
notype according to the estimated SNP genotype frequencies.
The null distribution of can be obtained by calculating theTLE

statistic for a large number of simulated data sets.

Study Designs for Test of Genetic Association

Our likelihood calculation allows the analysis of sibships of
arbitrary size and disease-phenotype configuration, including
unrelated affected or unaffected individuals, ASPs, and discor-
dant sib pairs (DSPs). For ease of presentation, we consider
only sibships of size �2. To construct different study designs,
we select either (1) one or two cases from each ASP or (2)
unrelated affected individuals. We use either cases only or se-
lect controls from unrelated unaffected individuals or unaf-
fected siblings. Different combinations of cases and controls
result in seven study designs (fig. 1). It is worth noting that
both the one sibling per ASP–control design and the case-
control design use unrelated affected and unaffected individ-
uals. The difference is that, for the one sibling per ASP–control
design, the cases are selected from ASPs, whereas, in the case-
control design, the cases are randomly selected from the gen-
eral population.

Given fixed genotyping resources, it is important to know
which study designs are the most powerful for detecting dis-
ease-SNP association. Since disease-mapping studies often start
from linkage analysis and since flanking-marker genotypes of-
ten are already available, for these studies, we compare the
efficiency of different study designs by fixing the total number
of individuals to be genotyped at the candidate SNP, and we
do not account for the cost or effort associated with collecting
flanking-marker data.

Simulations

We performed a set of simulations to evaluate the efficiency
of different study designs and to compare the statistical power
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Figure 3 Comparison of case-control design and one sibling per ASP–control design, under five-locus disease models, when the effect size
of the test locus increases and the effect size of the four remaining disease loci are fixed. Results are based on 2,000 replicate data sets. The
disease prevalence . The disease is influenced by five unlinked disease loci, each with a predisposing-allele frequency of 0.1. The SNP,K p 5%
with a minor-allele frequency of 0.1, is completely linked to the first disease locus, and between the two loci is 0.5. All disease loci follow2r
an additive model, with locus-specific at the test locus increasing from 1.02 to 1.25 and the locus-specific for the four remaining diseasel ls s

loci fixed at 1.02. Power is assessed at the 1% level. The solid line is for design with 500 cases (one sibling per ASP) and 500 controls. The
dashed line is for design with 500 cases and 500 controls.

Figure 4 Power comparison of case-control design and one sibling per ASP–control design, under multilocus disease models, when the
effect size of each disease locus is fixed and the number of disease loci increases. Results are based on 2,000 replicate data sets. The disease
prevalence . The disease is influenced by L ( ) unlinked disease loci, each with a predisposing-allele frequency of 0.1. TheK p 5% 2 � L � 10
SNP, with a minor-allele frequency of 0.1, is completely linked to the first disease locus, and between the two loci is 0.5. All disease loci2r
follow a dominant, an additive, or a recessive model, with locus-specific at each disease locus fixed at 1.02. Power is assessed at the 1%ls

level. The solid line is for design with 500 cases (one sibling per ASP) and 500 controls. The dashed line is for design with 500 cases and 500
controls.

of our test with other existing association tests. Table 2 de-
scribes the single-locus disease models that we considered, which
varied over a range of attributable fractions, disease allele fre-
quencies, and GRRs. We set the locus-specific sibling recur-
rence risk ratio 21 to 1.02.l s

When simulating the data, we assumed that the disease and

SNP allele frequencies are identical, in contrast to our model
in which these frequencies are allowed to differ. Setting these
frequencies to be equal allowed us to compare the efficiency
of different study designs over a broad range of LD (0 �

) between the disease alleles and the SNP. We assumed2r � 1
a map of 10 markers, each with four equally frequent alleles
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Figure 5 Power comparison of case-control design and one sibling per ASP–control design, under five-locus disease models, when the
effect size of the large-effect background disease locus increases and the effect size of the small-effect disease loci, including the test locus, is
fixed. Results are based on 2,000 replicate data sets. The disease prevalence . The disease is influenced by five unlinked disease loci,K p 5%
each with a predisposing-allele frequency of 0.1. The SNP, with a minor-allele frequency of 0.1, is completely linked to the first disease locus,
and between the two loci is 0.5. All disease loci follow a dominant, an additive, or a recessive model, with locus-specific fixed at the large2r ls

effect background disease locus increasing from 1.02 to 1.7 and the locus-specific for the small effect disease loci, including the testing locus,ls

fixed at 1.02. Power is assessed at the 1% level. The solid line is for design with 500 cases (one sibling per ASP) and 500 controls. The dashed
line is for design with 500 cases and 500 controls.

(heterozygosity ) evenly spaced at 11.16-cM inter-H p 0.75
vals, corresponding to under Haldane’s22 no-interfer-v p 0.1
ence map function. We centered the disease locus and candidate
SNP in the middle of the map and assumed zero recombination
between them. The disease locus genotypes were removed prior
to data analysis. For each of the disease models in table 2, we
simulated 5,000 replicate data sets for each design under link-
age equilibrium, to estimate the null distribution. We next sim-
ulated 2,000 replicate data sets with various levels of LD, to
assess the empirical power of our association test.

To examine the impact of multilocus inheritance on the rel-
ative efficiency of the case-control design and the one sibling
per ASP–control design, we also simulated data sets using the
additive multilocus disease models for which the multilocus
penetrance is the total of the penetrance summands as defined
by Risch.23 For example, given L unlinked diallelic loci con-
tributing to susceptibility in a recessive manner, the penetrance
for each genotype is

L

f � D I .�base l l
lp1

Here, is the baseline penetrance for the genotype contain-fbase

ing no disease-predisposing genotypes, is the increment inD l

penetrance for the disease-predisposing genotype at locus l,
and is an indicator of whether the individual is homozygousIl

for the disease-predisposing allele at locus l.
We simulated data sets assuming unlinked diallelicL � 2

disease loci, each with predisposing allele frequency of 0.1.
We simulated an associated SNP with minor-allele frequency
of 0.1 completely linked to the first disease locus, which we
call the test locus. We considered three scenarios: (1) increasing

the locus-specific at the test locus from 1.02 to 1.25 butl s

fixing the locus-specific at the remaining background diseasel s

loci at 1.02, (2) fixing the locus-specific at each disease locusl s

at 1.02 and increasing the number of disease loci from 2 to
10, and (3) increasing the locus-specific at one of the back-l s

ground disease loci from 1.02 to 1.7 but fixing the locus-
specific at the remaining disease loci, including the test locus,l s

at 1.02. We fixed the disease prevalence at 5% in all scenarios.
All disease genotypes were removed prior to data analysis.
Precise details of the penetrances are available in the appendix.

Results

In this section, we compare power of different study
designs when the number of individuals to be genotyped
is fixed under single-locus disease models. Further, we
examine designs with familial cases and singleton cases
under multilocus disease models. We also evaluate the
usefulness of flanking markers, compare our approach
with other tests of association, and illustrate how to com-
bine data from different family structures.

Power Comparisons of Different Study Designs

For each of the 12 disease models in table 2, we es-
timated the empirical power of the seven study designs
for test of association at four levels of disease-SNP LD
( , 0.50, 0.75, and 1). We ranked each study2r p 0.25
design by its estimated power assessed at the 1% em-
pirical significance level, so that the most powerful de-
sign has rank 1 and the least powerful design has rank
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7. Each study design was ranked times.12 # 4 p 48
Figure 2 displays the histograms of ranks for each study
design. Our simulation results for the single-locus mod-
els indicate that, for a fixed number of SNP genotypes,
the one sibling per ASP–control design is usually most
powerful ( in 41 of 48 settings, average rank prank p 1
1.31), followed by the ASP-control design. For all 12
single-locus disease models we considered, the case-con-
trol design is less powerful than designs that include fa-
milial cases. In addition, we found that the DSP design
is always less powerful than designs that include pop-
ulation controls. For a fixed genotyping effort, we also
found that, under common dominant ( ) andp p 0.7D

rare recessive ( ) models, designs including onlyp p 0.1D

affected individuals can be more powerful than designs
that also include unaffected individuals. Nevertheless,
we generally do not advocate such designs, since they
are more vulnerable to genotyping error and deviations
from Hardy-Weinberg equilibrium. Our results suggest
that the rankings were similar when and when2r p 1

, and no designs behave better or worse at2r p 0.25
these two extremes.

Given a set of ASPs, an investigator may initially geno-
type candidate SNPs in only one sibling per ASP, halving
genotyping costs on the cases. We compared the power
of the ASP-control design with that of the one sibling
per ASP–control design, where the latter uses only one
sibling per ASP from the ASPs generated for the previous
design (table 3). We found that the loss of power by
genotyping only one sibling per ASP generally is modest.
This suggests that, for an initial screen of SNPs, it may
be cost effective to initially genotype only one sibling
per ASP, with genotyping of the other siblings performed
only when a candidate SNP shows at least suggestive
evidence of association.

Impact of Multiple Disease Loci

We analyzed simulated data sets that included mul-
tiple disease loci. We compared the power of the case-
control design and the one sibling per ASP–control de-
sign, since these designs are typically among the most
powerful and represent a choice commonly faced by
investigators—namely, whether to collect familial cases
or unrelated cases. Figure 3 indicates that, for the five-
locus additive disease models that we considered, where
the background untested disease loci have small effect

, both study designs have increasing power(l p 1.02)s

as the effect of the test locus increases. Further, the in-
crement in power is more pronounced for the one sibling
per ASP–control design. Similar patterns were observed
for models for which all disease loci are dominant or
recessive and for models with larger numbers of disease
loci (data not shown).

We also investigated the impact of multiple disease

loci when all loci have the same effect (fig. 4). We found
that the case-control design has approximately constant
power across different number of disease loci, whereas
the power of the one sibling per ASP–control design de-
creases as the number of disease loci increases, corre-
sponding to greater familial aggregation. A similar finding
was reported by Risch,9 who found that, when the sibling
residual correlation is high, multiplex affected sibships
and familial cases sometimes provide a smaller advantage
over randomly selected cases. Although the advantage
of familial cases diminishes as the number of disease loci
increases, we found that the one sibling per ASP–control
design remained more powerful than the case-control de-
sign for all the disease models that we considered.

As expected, for disease models for which the test locus
has a fixed small effect , we found that the(l p 1.02)s

power of the case-control design is not influenced by the
effect size of the untested background locus (fig. 5) when
the disease prevalence is fixed. In contrast, the power of
the one sibling per ASP–control design decreases as the
effect size of the background locus increases. Generally,
the one sibling per ASP–control design has greater power
than the case-control design, but the case-control design
becomes more powerful when the effect of the back-
ground locus is very large ( in our simulations)l 1 1.6s

relative to the test locus ( in our simulations).l p 1.02s

Improvement of Power by Including Flanking Markers

In sib pair samples, our method makes use of geno-
types on flanking markers, which may provide valuable
information about the underlying disease models, espe-
cially when these markers are closely linked to the un-
observed disease locus. To assess the utility of flanking-
marker data on our test of association, we repeated the
power estimation procedure for the ASP design and the
one sibling per ASP design. Table 4 suggests that the
flanking-marker data can substantially increase the as-
sociation power for dominant and additive models. Our
results also indicate that the flanking markers are more
useful for SNPs in which one allele is rare.

Comparison with Other Tests of Association

We compared the power of our test with other tests
of association. The significance for all tests was deter-
mined empirically by simulating null distributions and
getting critical values. For the case-control design, we
compared with Pearson’s statistic for the table2x 2 # 32

of genotype frequencies in cases and controls. For the
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ASP-control design, we compared with Risch and Teng’s5

test

ˆ ˆp � p1 2T p ,
ˆ ˆ(ru�2r�u)p(1�p)�

4run

where n is the number of sibships, each with r affected
sibs, and u is the number of unrelated controls matched
to each sibship,

2r ˆ ˆp � up1 2r�1
p̂ p ,

2r � ur�1

and and are the estimated SNP allele frequencyˆ ˆp p1 2

for the ASPs and the controls, respectively. For the de-
sign with 250 ASPs and 500 controls, , , andr p 2 u p 2

.n p 250
Table 5 shows that, for most of the models we con-

sidered and especially for recessive models, our test has
greater power than the Pearson’s test. Our test is less2x2

powerful than Risch and Teng’s test for the additive
models examined. This is because Risch and Teng’s test
is a 1-df test, whereas our test relies on the estimation
of several disease model parameters, resulting in more
degrees of freedom. We found that when assuming a
prespecified disease model (e.g., additive, dominant, or
recessive) by imposing constraints on penetrances esti-
mated in our model, the power of the two tests became
comparable (data not shown). This suggests that fixing
some disease model parameters is likely to improve the
power if these parameters can be approximated from
previous studies. Note that neither our test nor Risch
and Teng’s test controls for population stratification.

Combining Data from Different Family Structures

A key advantage of our method is its ability to com-
bine data from different sampling units. In many asso-
ciation studies, particularly those that follow an initial
linkage study, an investigator may have different sam-
pling units available. For example, the data may contain
nuclear families with different numbers of genotyped par-
ents and affected and unaffected siblings collected for
the initial linkage analysis and unrelated affected or un-
affected individuals from additional sampling. A simple
strategy for analyzing such data would be to use all
unrelated affected individuals and one affected sibling
per sibship to form the case group and then use all un-
related unaffected individuals to form a control group.
However, this does not use all available data and can
give variable results, depending on which affected sib-
lings are selected.7

To assess the gain in power by using all available data
simultaneously, we simulated different combinations of

ASPs, DSPs, unrelated cases, and unrelated controls. We
compared the power of our test when using all available
data with tests that use only partial data obtained by
selecting one sibling per sampling unit. Table 6 suggests
that there could be a substantial loss of power when
only a subset of the data is used. As expected, when the
proportion of data being used decreases, the loss of
power increases, suggesting that when the majority of
the data are sampled from sibships or families, it is im-
portant to use all available data.

As when deciding to genotype all affected siblings or
only one sibling per ASP, we found that including the
genotypes of all affected family members increases power.
When it is not cost-effective to do this additional geno-
typing for all markers, it could be considered for an
additional follow-up phase.

Discussion

We have developed a unified likelihood framework to test
for disease-marker association that allows the analysis of
sibships of arbitrary size and disease-phenotype config-
uration. Our likelihood calculations allow us to accom-
modate different association-study designs and to com-
pare their efficiencies. By use of simulation studies, we
found that when the number of individuals to be geno-
typed at the candidate SNP is fixed, for single-locus mod-
els, the one sibling per ASP–control design was generally
most powerful, followed by the ASP-control design. As
others have noted6, we also found that familial cases
contributed more association information than did sin-
gleton cases and that the DSP design was less powerful
than designs that include unrelated unaffected individ-
uals. This pattern holds for disease prevalence 2% �

, with similar relative efficiency for the sevenK � 20%
study designs that we considered (data not shown). Ad-
ditional simulations reveal that our conclusions regard-
ing the relative efficiency of different study designs re-
main unchanged at more-stringent critical values (a p

, .00001, and .000001)..0001
In most of our simulations, we generated data in which

allele frequencies were identical at the disease and SNP
loci. To evaluate the robustness of our model to differ-
ences in allele frequency between the two loci, we con-
ducted additional simulations over a broad range of al-
lele-frequency differences. We considered combinations
of and for dominant,p � {.1,.3,.5,.7} p � {.1,.3,.5,.7}D A

additive, and recessive models. Results of these addi-
tional simulations suggest that the relative efficiency of
different study designs remains unchanged, although all
designs have low power when the allele frequencies are
very different, since is low.2r

Our results show that the proposed test is usually
more powerful than the Pearson’s test for the case-2x

control design. One reason for this advantage is that our
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test uses an explicit genetic model for the disease, whereas
the Pearson’s test is nonparametric in nature. Our2x

results are consistent with those of Thompson et al.,18

who showed that even simple modeling assumptions,
such as assuming Hardy-Weinberg equilibrium in the
general population, increase power of genetic-association
studies.

Our method does not depend on transmission dis-
equilibrium and can incorporate parental genotypes
when available. To evaluate the potential gain in power
afforded by collecting parental genotypes, we generated
data sets with 500 controls and 500 parent–affected off-
spring trios for disease models (table 2). We analyzed
the data, first taking into account only genotypes for the
500 unrelated cases and controls (average power p

; ) and then also incorporating parental ge-39% a p .01
notypes (average , ). We expectpower p 54% a p .01
that parental data will be less useful on a per-genotype
basis but will still provide useful information on allelic
association.

Our method assumes that the superlocus formed by
combining the disease and SNP loci is in Hardy-Wein-
berg equilibrium in the general population. In the pres-
ence of population stratification, the Hardy-Weinberg
equilibrium assumption may be violated and our test
may be invalid. An important step for avoiding popu-
lation stratification is to carefully match cases and con-
trols on the basis of their genetic background. When the
degree of stratification is small, it may be possible to
adjust our test statistics with genomic control24 or a sim-
ilar strategy.

We initially assumed that there is a single disease-pre-
disposing variant in the region. As others have noted,5

under this assumption, familial cases tend to be enriched
for the disease-predisposing allele and thus create a stron-
ger contrast with unaffected individuals. For diseases
that are influenced by multiple genes, the advantage of
familial cases will depend on the underlying disease mod-
els. Our results indicate that, for disease models for
which the test locus has equal or stronger effect than
the remaining background disease loci, familial cases
provide more association information than do randomly
selected cases. This remains true unless the effect size of
the test locus is much smaller (e.g., ) than atl p 1.02s

least one other untested disease locus (e.g., ). Al p 1.6s

similar pattern was observed by Howson et al.10 for ad-
ditive and crossover two-locus disease models and by
Allison et al.25 for extreme sampling in quantitative trait
linkage/association studies.

Our findings have important implications for genetic-
association studies of many complex diseases, such as
depression and schizophrenia, for which loci of large ef-
fect have not been identified. For such diseases, designs
with familial cases are likely to be a good choice for the
initial association studies. One might consider genotyp-

ing additional affected family members for those mark-
ers that show suggestive evidence of association. Our
findings also have implications for disease for which a
major gene is known to play a role—such as many auto-
immune disorders for which a strong human leukocyte
antigen effect has been demonstrated—and age-related
macular degeneration, for which two major loci have
been identified.1,26–30 For these diseases, the standard case-
control design might be preferred for detecting genes that
contribute only a small fraction of the overall disease
risk.

Enabled by improvements in genotyping technologies,
association studies are beginning to be conducted ge-
nomewide.1,2 We believe our method will be useful for
analyzing the results of these studies. Nevertheless, ap-
plying our method to hundreds of thousands of markers
may present a computational challenge, because it relies
on an iterative procedure to maximize the likelihood of
the data under alternative models. If computational re-
sources are limited, one option is to first screen all mark-
ers with a computationally inexpensive test and then
apply our method to markers that show suggestive evi-
dence of association.

In this article, we focused on comparing efficiency of
different study designs when the genotyping cost is fixed.
Although familial cases provide more association infor-
mation than do singleton cases in most settings we con-
sidered, familial cases (if not already sampled) are typ-
ically more difficult to collect and hence may result in
higher phenotyping costs. It would be interesting to in-
vestigate the relative efficiency of familial cases and sin-
gleton cases, taking into account both genotyping and
phenotyping costs, with the goal of minimizing total
study cost.

In summary, we have developed a unified statistical
framework to test for disease-marker association, using
sibships of arbitrary size and disease-phenotype config-
uration. Our method can be readily extended to allow
general pedigrees. We compared the efficiency of seven
study designs when the number of individuals to be ge-
notyped at the candidate SNP is fixed. Our results sug-
gest that familial cases are more advantageous than are
randomly selected cases when the disease follows a sin-
gle-locus model. This also appears to be true for mul-
tilocus disease models, unless the effect size of the test
locus is much smaller than that of at least one untested
disease locus. On a cost basis, genotyping one sibling
per affected sibship and using existing flanking-marker
information provides a powerful design for initial asso-
ciation studies. We believe our findings will be helpful
for researchers designing and analyzing complex dis-
ease–association studies and will increase power and fa-



cilitate genotyping resource allocation. We implemented
our method in a C�� program, which can be down-
loaded from the University of Michigan Center for Sta-
tistical Genetics Web site.

Acknowledgments

This research was supported by National Institutes of Health
grants HG00376 (to M.B.) and HG02651 and EY12562 (to
G.R.A.). M.L. was previously supported by a University of
Michigan Rackham predoctoral fellowship. We gratefully thank
two anonymous reviewers for their valuable comments.

Appendix

Parameters for Multilocus Disease Models

Assume the disease is influenced by L unlinked dial-
lelic disease loci. For locus l , let denote(1 � l � L) Dl

the disease-predisposing allele and denote the low-riskdl

allele. Let denote the baseline penetrance for thefbase

genotype in which all disease loci are homozygous for
the low-risk allele. For an individual with genotype

, let denote the genotype score that� {d d ,D d ,D D } gl l l l l l l

counts the number of the alleles. Further, assume thatDl

the penetrance is increased over the baseline by .w(g )l
The increment of penetrance depends on the marginal
disease model at the corresponding locus. For example,
for additive, dominant, and recessive models canw(g )l
be defined as shown in table A1. For an individual with
genotype scores , the corresponding multilo-(g , … ,g )1 L

cus penetrance is

L

0 � f � w(g ) � 1 .�base l
lp1

The individual’s disease status can be determined once
the genotype is known. Samples of unrelated cases and
controls and familial cases can be simulated as usual.

Tables A2–A4 list disease-model parameters for the ad-
ditive multilocus-disease models described in this article.

Table A1

Increment of Penetrance

GENOTYPE

AT LOCUS l gl

w(g )l

Additive Dominant Recessive

dldl 0 0 0 0
Dldl 1 0.5Dl Dl 0
DlDl 2 Dl Dl Dl

Table A2

Disease-Model Parameters for Figure 3

ls,test

ADDITIVE DOMINANT RECESSIVE

fbase D test Dbackground fbase D test Dbackground fbase D test Dbackground

1.02 .0264 .0471 .0471 .0255 .0258 .0258 .0435 .1307 .1307
1.05 .0237 .0745 .0471 .0226 .0408 .0258 .0427 .2067 .1307
1.10 .0206 .1054 .0471 .0194 .0578 .0258 .0418 .2924 .1307
1.15 .0182 .1291 .0471 .0169 .0707 .0258 .0412 .3581 .1307
1.20 .0162 .1491 .0471 .0148 .0817 .0258 .0406 .4134 .1307
1.25 .0145 .1667 .0471 .0130 .0913 .0258 .0401 .4622 .1307

NOTE.—Data are a comparison of five-locus disease models for which the effect size of the test
locus increases and the effect size of the four remaining disease loci are fixed. The disease prevalence
K is fixed at 5%. The predisposing allele frequency at each locus is fixed at 0.1. The locus-specific
sibling recurrence risk ratio, , at the test locus is increased from 1.02 to 1.25, and the locus-ls,test

specific sibling recurrence risk ratio at the four remaining disease loci is fixed at 1.02. is theD test

increment of penetrance at the test locus, and is the increment of penetrance at each ofDbackground

the four remaining disease loci.
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Table A3

Disease Model Parameters for Figure 4

L

ADDITIVE DOMINANT RECESSIVE

fbase D fbase D fbase D

2 .0406 .0471 .0402 .0258 .0474 .1307
4 .0301 .0471 .0304 .0258 .0448 .1307
6 .0217 .0471 .0206 .0258 .0422 .1307
8 .0123 .0471 .0107 .0258 .0395 .1307
10 .0029 .0471 .0009 .0258 .0369 .1307

NOTE.—Data are a comparison of L-locus disease models for which
the effect size of each disease locus is fixed and the number of disease loci
increases. The disease prevalence K is fixed at 5%. The predisposing allele
frequency at each locus is fixed at 0.1. The locus-specific sibling recurrence
risk ratio at all disease loci is fixed at 1.02. is the increment ofl Ds

penetrance at each locus.

Table A4

Disease Model Parameters for Figure 5

ls,large

ADDITIVE DOMINANT RECESSIVE

fbase Dsmall D large fbase Dsmall D large fbase Dsmall D large

1.02 .0264 .0471 .0471 .0255 .0258 .0258 .0435 .1307 .1307
1.1 .0206 .0471 .1054 .0194 .0258 .0578 .0418 .1307 .2924
1.2 .0162 .0471 .1491 .0148 .0258 .0817 .0406 .1307 .4134
1.3 .0129 .0471 .1826 .0114 .0258 .1001 .0397 .1307 .5064
1.4 .0101 .0471 .2108 .0084 .0258 .1155 .0389 .1307 .5847
1.5 .0076 .0471 .2357 .0058 .0258 .1292 .0382 .1307 .6537
1.6 .0053 .0471 .2582 .0035 .0258 .1415 .0376 .1307 .7161
1.7 .0033 .0471 .2789 .0013 .0258 .1528 .0370 .1307 .7735

NOTE.—Data are a comparison of five-locus disease models for which the effect size of
the large-effect background disease locus increases and the effect size of the small-effect
disease loci, including the test locus, is fixed. The disease prevalence . The pre-K p 5%
disposing allele frequency at each locus is fixed at 0.1. The locus-specific sibling recurrence
risk ratio, , at the large-effect background locus is increased from 1.02 to 1.7, andls,large

the locus-specific sibling recurrence risk ratio at the four remaining loci, including the test
locus, is fixed at 1.02. is the increment of penetrance at the large-effect backgroundD large

locus, and is the increment of penetrance at each of the four remaining loci.Dsmall

Web Resource
The URL for data presented herein is as follows:

University of Michigan Center for Statistical Genetics, http://www.sph
.umich.edu/csg/abecasis/lamp/
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