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Etiologic heterogeneity is a fundamental feature of complex disease etiology; genetic linkage analysis methods to map genes
for complex traits that acknowledge the presence of genetic heterogeneity are likely to have greater power to identify subtle
changes in complex biologic systems. We investigate the use of trait-related covariates to examine evidence for linkage in
the presence of heterogeneity. Ordered-subset analysis (OSA) identifies subsets of families defined by the level of a trait-
related covariate that provide maximal evidence for linkage, without requiring a priori specification of the subset. We
propose that examining evidence for linkage in the subset directly may result in a more etiologically homogeneous sample.
In turn, the reduced impact of heterogeneity will result in increased overall evidence for linkage to a specific region and a
more distinct lod score peak. In addition, identification of a subset defined by a specific trait-related covariate showing
increased evidence for linkage may help refine the list of candidate genes in a given region and suggest a useful sample in
which to begin searching for trait-associated polymorphisms. This method provides a means to begin to bridge the gap
between initial identification of linkage and identification of the disease predisposing variant(s) within a region when
mapping genes for complex diseases. We illustrate this method by analyzing data on breast cancer age of onset and
chromosome 17q [Hall et al., 1990, Science 250:1684–1689]. We evaluate OSA using simulation studies under a variety of
genetic models. & 2004 Wiley-Liss, Inc.
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INTRODUCTION

Complex diseases, such as type 2 diabetes,
cancer, hypertension, and cardiovascular disease,
are characterized by a multifactorial etiology.
Genes and environment likely interact in a
complex fashion to cause disease. Presumably,
development of a complex disease is a result of
perturbations in biological pathways. Genetic
polymorphisms may affect various components
of these pathways resulting in differential effects
on quantitative measurements related to the
complex disease. Detecting the effects of genes
and their genetic polymorphisms on a complex
trait may require taking intermediate traits or
covariates into account so that the susceptibility

gene is detectable in a subset of the families. This
model suggests that genetic heterogeneity will be
a fundamental feature of complex disease etiology.
Furthermore, genetic linkage analysis methods to
map genes for complex traits should acknowledge
the presence of genetic heterogeneity to maximize
power to identify subtle changes in complex
biologic systems.
The large genome screens for the genetic

analysis of complex traits provide tremendous
amounts of information. These screens typically
produce lod scores or estimated IBD sharing for
hundreds of families typed for hundreds of
genetic markers across the genome. This vast
amount of information has not often translated
directly into impressive lod scores, presumably
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because of etiologic complexity. The presence of
multiple independent and/or interacting disease
genes and environmental factors causes signifi-
cant problems for genetic linkage analysis. Etiolo-
gic heterogeneity reduces power to detect linkage,
but explicitly taking heterogeneity into account
can help minimize this information loss [Arnett
et al., 1997; Lunetta and Rogus, 1998; Greenwood
and Bull, 1999; Leal and Ott, 2000]. Even when it is
possible to detect linkage to a region, etiologic
heterogeneity can bias the estimate of gene
location and result in broader confidence intervals
[Ott, 1983; Falk, 1997; Chiano and Yates, 1994].
Several linkage analysis methods have been

proposed to recognize and correct for heterogene-
ity. The most popular is the admixture test and its
extensions, which allow for two or more disease-
causing loci [Ott, 1983; Bhat et al., 1999]. This test
uses evidence for or against linkage at a marker to
suggest the presence of heterogeneity and may not
be particularly sensitive when the sample is
composed of small families, such as those usually
used for late-onset diseases [Falk, 1997].
Another method to assess genetic heterogeneity

is the pre-divided sample test [Morton, 1956].
When a priori evidence for genetic heterogeneity
exists, subsets of families may be defined prior to
analysis and examined for differences in the
evidence for linkage. This idea was applied to a
genetic linkage study of 26 Finnish families from
the Bothnia region in which no evidence for
linkage was obtained in the overall sample but
suggestive evidence for linkage was obtained in
families in the lowest quartile of 30-minute insulin
[Mahtani et al., 1996]. While it may be straightfor-
ward to select trait-related covariates based on
biological or clinical considerations, the value of
the covariate to choose as a cutoff in defining a
genetically homogeneous subset often is not
obvious.
One way to avoid having to define arbitrary

a priori cutoffs is to use a function of a covariate to
rank the families and then to add in the families
one or a few at a time based on the covariate. This
idea was exploited in the initial report of the
linkage of breast and ovarian cancer to the gene
subsequently identified as BRCA1 [Hall et al.,
1990; Merette et al., 1992; Miki et al., 1994; Futreal
et al., 1994]. Hall et al. [1990] ranked the families
by mean age of onset of breast cancer and plotted
the cumulative sum of the lod scores. The results
indicate that the evidence for linkage was con-
centrated in the families with early age of onset.
Recognition of this key feature was important in

subsequent studies to narrow the region of linkage
and to identify BRCA1. Had age of onset been
ignored, linkage to chromosome 17 might have
been excluded as the overall lod score was
substantially negative due to the heterogeneous
mixture of families in the sample. We expand
upon the idea of using a trait-related covariate to
examine evidence for linkage in the presence of
heterogeneity. Our ordered subset method identi-
fies subsets of families defined by level of a trait-
related covariate that provide maximal evidence
for linkage, without requiring a priori specification
of the subset. The significance of the subset and its
evidence for linkage is evaluated using a permu-
tation procedure to estimate empirical P values.
We propose that examining evidence for linkage

in the subset directly can result in a more
etiologically homogeneous sample. In turn, the
reduced impact of heterogeneity may result in
increased overall evidence for linkage to a specific
region and the potential to produce a more
distinct lod score peak with more precise gene
localization. The identified ordered subset may be
a useful sample in which to begin searching for
trait-associated polymorphisms or mutations
through sequencing or other fine-mapping tech-
niques. Identification of a trait-related covariate
using this ordered subset analysis (OSA) also may
help refine the list of candidate genes in a given
region based on biological pathways, which
connect the covariate and the trait. In this report,
we apply OSA to linkage results of breast cancer
to D17S74 as published by Hall et al. [1990]. We
present the results of a simulation study evaluat-
ing type I error rates and power for a variety of
genetic models consistent with a complex genetic
trait. We find that OSA preserves the appropriate
type I error rates. Furthermore, compared to
analyses that do not use the covariate information
but do allow for heterogeneity among families,
OSA has substantially greater power to detect
ordered subsets of families defined by a covariate.

METHODS

Ordered subset analysis (OSA) may be used at
any time during a linkage analysis. The require-
ments are additive linkage statistics and covari-
ates for each family. Typically, use of this method
will begin when the genome screen linkage
analysis has been completed. We assume in what
follows that the results of the linkage analysis are
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lod scores for all families, although other additive
test statistics could also be used (see Discussion).
The input for OSA is the lod scores Zi(d,g) for

family i, at position d where d may range across a
region, chromosome, or the genome, and g
represents the genetic model. We will refer to the
maximum of the sum of the lod scores over all
families as the overall baseline lod score, Z(d,g).
The genetic model may take a variety of forms
from completely unspecified, to a vector of IBD
sharing probabilities or recurrence risk ratios (l)
or a full Mendelian model with a genetic model
parameter set including penetrances and allele
frequencies. Depending on the analysis method
used for generating the family-specific lod scores,
the genetic model may include reduced pene-
trance, liability classes, or phenocopies.
The covariates may be one or more continuous

or ordinal variables thought to be related to the
trait of interest and are often a function of trait
values for members in the family. Examples of
covariates include mean, median, or minimum
covariate values for affected individuals in the
family. We use the term ‘‘covariate’’ very generally
to include disease-related quantitative traits as well
as IBD sharing or linkage statistics at another locus.

FINDING THE MAXIMUM ORDERED SUBSET
STATISTIC

We begin by ordering the families based on
some covariate value. Let Z(j)(d, g) be the lod score
matrix for ordered family j. For example, if we are
ordering families for low to high mean age of
onset, we would start with the family with the
lowest mean age of onset, with lod score matrix
Z(1)(d, g). We find the maximum lod score in that
family and the estimates of bdd1 andbgg1 at which the
maximum occurs. Next we use element-wise
addition to add the matrix for the family with
the next lowest mean age of onset, Z(2)(d, g), to the
matrix for the first family. In general, we create the
jth partial sum by adding each element of the lod
score matrix for each family up to and including
ordered family j:

Zjðd; gÞ ¼
Xj

k¼1

ZðkÞðd; gÞ

After the addition of each family j, we note the

maximum summed lod score, Zjðbddj;bggjÞ and esti-

mates of the disease location ðbddjÞ and disease
model parameters ðbggjÞ. After all of the N families
have been added in turn, we have maxima for

each partial sum of the lod scores
ðZ1ðbdd1;bgg1Þ; . . . ; ðZNðbddN;bggNÞÞ, ordered by the fa-
mily-specific covariate value. Note that the values
of d and g can and often are maximized at
different values depending on the subset of
families. We define the maximum ordered subset
lod score

Z�ðbdd�;bgg�Þ ¼ max
j

Zjðbddj;bggjÞh i

and the D lod score

D ¼ Z�ðbdd�;bgg�Þ � Zðbdd�;bgg�Þ
to be the difference between the maximum
ordered subset lod score and the lod score
summed over all families at the same position
and model. Since a genetically more homogeneous
subset may be identified either through high
values or low values of a covariate, we generally
perform the summation in both ascending and
descending order unless there is strong prior
evidence to consider only one order or the other.

EVALUATING LINKAGE EVIDENCE IN
SUBSETS OF FAMILIES

Given the maximization over subsets procedure
we have employed, the maximum ordered subset
lod score will always be at least as large as the
overall lod score. Therefore, the distribution of the
maximum ordered subset lod score cannot be the
same as the distribution of the lod score without
this maximization. The observation of a large lod
score in a subset of the families must be evaluated
in the context of the evidence for linkage in the
entire sample and the fact that we have selected a
subset of the data.
To assess significance of linkage evidence for a

subset conditional on linkage evidence in the
entire sample, we employ a permutation strategy
to test the null hypothesis that there is no
relationship between the trait-related covariate
and the evidence for linkage. In the permutation
test procedure, we assess the significance of the
increase in the lod score in the identified ordered
subset compared to the baseline lod score in all
families. We sample from the distribution of all N!
permutations by randomly ordering the N fa-
milies and calculating the maximum ordered
subset lod score for each permutation p, Z�

pðd�p; g�pÞ,
in exactly the same way as for the original data.
We estimate the P value for the ordered subset lod
score as the proportion of permutations giving
maximum ordered subset lod scores as large or
larger than that observed. The permutation test
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can be used to estimate P values when maximiz-
ing the ordered subset lod score at a single point,
for a chromosomal region or whole chromosome,
or for the entire genome.
An assumption of permutation tests is that the

observations to be permuted are exchangeable.
When all families are of the same size and
structure, this assumption is met. When families
are of different sizes or structures, the P values are
approximate.

COMPUTATIONAL EFFICIENCY

While this analysis and particularly the require-
ments of the permutation test may appear
computationally burdensome, this burden can be
minimized. If the number of family-position-
model-specific lod scores Zi(d,g) is not too large,
these lod scores can be calculated once and stored.
OSA then may be performed for many different
functions of covariates and for as many permuta-
tions as desired by simply reordering the families
and carrying out the summation and maximiza-
tion steps. We routinely compute permutation
tests for analyses with over 500 families, 400
positions, and 25 disease models in this way.
To devote more computation time to assessing

significance of the most interesting results, we
have implemented an inverse-sampling method
for empirical P value estimation. We set the
maximum number of permutations desired as a
parameter for the empirical P value calculation.
We continue sampling until the estimated var-
iance of the empirical P value bpp is sufficiently
small so that 1

2
bpp is less than the 95% lower bound

for bpp or until the maximum number of permuta-
tions is reached. This procedure uses the Poisson
approximation to the Binomial for small P. The
variance of bpp is evaluated after every 10th
permutation replicate. If bpp exceeds this ‘‘boredom
threshold,’’ the permutation routine stops before
the maximum number of permutations is reached.
We also follow the recommendation of North et al.
[2002] that the number of permutations giving a
larger statistic than the observed statistic be 410.
Thus, we can set a high number of maximum
permutations but only reach that maximum when
trying to estimate small P values, increasing
computational efficiency.

APPLICATION TO BREAST CANCER DATA

We applied OSA to the data published by Hall
et al. [1990] in 23 families ascertained for multiple
cases of breast cancer. We used the data presented

in their table I that includes, for each family, the
mean age of onset of breast cancer in the affected
family members and lod scores at five positions
relative to marker D17S74. We used their figures 1
and 2 to define minimum age of onset, maximum
age of onset, and range of age of onset for each
family. Hall et al. [1990] considered only one
genetic model, so that we stored only five lod
scores (one for each position) for each family.

SIMULATION STUDIES

We performed a simulation study to evaluate
the false-positive rate of OSA in affected sib pair
(ASP) linkage analysis using the recurrence risk
ratio to sibs l to describe the genetic effect [Risch
1990a–c; Hauser and Boehnke 1998]. As seen in
power studies of ASP linkage analysis, l is a
critical factor in determining the power of the
linkage analysis [Hauser et al., 1996]. We used the
simulation package SIMLA that we developed for
simulation of complex genetic traits incorporating
both linkage and association [Bass et al., 2004]. We
simulated ASPs with genotyped parents under
disease models with locus-specific l values of 1.2
and 1.4. We first simulated data sets to represent
two null hypotheses: (1) no linkage in any of the
ASPs, l¼1, and 2) linkage (1.5olo5.0) in 20–50%
of the ASPs but no difference in the covariate
distribution between the linked and unlinked
subsets (OSA null hypothesis of no covariate
effect). We simulated a covariate value for each
individual from a normal distribution. To evaluate
the power of OSA to identify a linked subset, we
simulated a subset in which the covariate values
were chosen from a mixture of normal distribu-
tions with means different in the linked and
unlinked ASPs. Table I shows the parametric
models used to perform the simulations to exam-
ine power. These models were chosen to yield
population prevalences ofB5% as well as to cover
a range of models for complex diseases. Two
values of l are given for each model, the overall l
for the combined sets of families and the l in the
linked subset. These values allow comparisons
between different genetic models resulting in the
same l values. We simulated genotype data for a
90-cM map of 10 markers evenly spaced at 10-cM
intervals. In simulations with l 41, we placed the
disease locus at 45 cM. We simulated 5,000
replicate data sets of 400 ASPs for each condition
to examine type I error rates under the two null
hypotheses and 500 replicate data sets for the
power studies.
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We performed two linkage analyses of the
simulated data sets to generate family-specific
lod scores for input into OSA. First, we carried out
multipoint ASP based on the IBD sharing method
of Risch [1990a–c] as implemented in Siblink
[Hauser and Boehnke, 1998]. This method pro-
vides OSA input files of lod scores calculated at a
grid of map positions and l values assuming an
additive genetic model. Second we performed
two-point parametric linkage analysis with
Vitesse [O’Connell and Weeks, 1995] using the
parametric model from the linked subset to
calculate the family-specific lod scores at a marker
5 cM from the true disease location. We used these
family-specific lod-scores as input to the HOMOG
package [Ott, 1983, 1999], which implements the
admixture test. HOMOG performs nested like-
lihood ratio tests for linkage with or without
genetic heterogeneity and provides a w2 test
statistic for the hypotheses of linkage with homo-
geneity among the families (yo0.5, a¼1) vs.
linkage with heterogeneity (yo0.5, ao1). To
assess whether the incorporation of a trait-related
covariate would provide information related to
heterogeneity among the families above and
beyond differences in the maximum lod scores,

we compared the power of OSAwith the power of
the test for heterogeneity provided by the admix-
ture test.

RESULTS

BREAST CANCER EXAMPLE

Table II shows the results of OSA applied to the
linkage results for breast cancer and chromosome
17q [Hall et al., 1990] that localized BRCA1 and
ultimately led to the identification of BRCA1
[Miki et al., 1994]. OSA replicates the results
presented in the paper with a maximum subset
lod score of 5.98 and D lod of 11.46 occurring in
the 7 families with youngest mean age of onset.
Hall et al. [1990] did not estimate a P value for
their result. The approximate empirical P value for
this subset from OSA is 0.0009, suggesting that the
result would be highly unlikely if there were no
relationship between age of onset and evidence
for linkage. Lowest maximum age of onset and
range of age of onset in the family also gave
significant improvements in linkage evidence
with lod scores of 5.10 and 4.66 (D lods of 10.58
and 11.14, P values of .02 and .01, respectively).

TABLE I. Genetic models used for the simulation studiesa

Penetrances

Model number l l in linked subset Genetic model
Proportion of families
in the linked subset

Disease allele
frequency P(A) P(D|AA) P(D|Aa) P(D|aa)

1 1.2 5.0 Dominant 0.20 0.02 0.70 0.70 0.02
2 1.2 4.0 Recessive 0.22 0.18 0.80 0.02 0.02
3 1.2 2.5 Dominant 0.28 0.06 0.32 0.32 0.02
4 1.2 2.5 Recessive 0.28 0.28 0.40 0.02 0.02
5 1.2 2.5 Additive 0.28 0.06 0.58 0.29 0.02
6 1.2 1.5 Additive 0.50 0.02 0.58 0.29 0.04
7 1.4 2.3 Additive 0.50 0.06 0.50 0.25 0.02

al is the locus-specific recurrence risk ratio in the entire sample. Penetrances are expressed as the probability of disease (D) given the
genotype. The disease prevalence was constrained to be ~0.05.

TABLE II. Results of ordered subset analysis applied to breast cancer linkage data for 23 families and marker D17S74
[Hall et al. 1990] for four age-related covariates

Subste

Age of onset covariate Order byy Maximum lod D lod at byy Empirical P-value Families in the subset

Mean Ascending 0.001 5.98 11.46 0.0009 1–7
Descending 0.20 2.35 0.00 0.89 1–23

Minimum Ascending 0.10 3.03 1.49 0.14 1–5,7–10,13,15,16
Descending 0.20 2.35 0.00 0.82 1–23

Maximum Ascending 0.001 5.10 10.58 0.02 1–4,7,8
Descending 0.20 2.35 0.00 0.66 1–23

Range Ascending 0.001 4.66 11.14 0.01 1,3–7
Descending 0.20 2.35 0.00 0.91 1–23
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The families included in these subsets are very
similar to those included for the mean age subset,
reflecting the high correlation in these family-
specific functions of age of onset. The minimum
age of onset gave a nonsignificant result with a
maximum subset lod score of 3.03, D lod of 1.49,
and P value¼0.14. No subsets for any of the age-
related covariates showed an increase in the lod
score when the 23 families were ordered from
oldest to youngest or largest to smallest max-
imum, minimum, or range so that the results for
these analyses are the same as the results for the
complete set of families.

SIMULATION STUDY

Table III shows the results of a simulation study
using multipoint affected sib pair linkage analysis
to assess the overall behavior of OSA under no
linkage (l¼1) and linkage (l41) but no covariate
effect, i.e., the possible null hypotheses for OSA.
As expected, the mean maximum subset lod score
is larger than the overall lod score in every case.
The D lod measures the difference between the
maximum subset lod score and the overall base-

line lod score at that map position and for that
model. For the no linkage and no covariate effect
simulations we performed, the mean D lod scores
were 41 lod unit. The type I error rates estimated
as the proportion of replicates with empirical P
values o0.05 and o0.01 are close to the nominal
levels for both the no linkage and no covariate
effect cases. This observation suggests that, as
expected, the permutation approach adequately
adjusts for the increase in the lod score when
maximizing over subsets.
Table IV presents the power of OSA using the

multipoint nonparametric affected sibling pair lod
scores generated by Siblink for the genetic models
listed in Table I. In these models, 20–50% of the
families are linked; the covariate distribution is a
mixture of normals with means two standard
deviations apart in linked and unlinked families.
The power of OSA is estimated by the proportion
of replicates with empirical P values bpp less than
0.05 or 0.01. Not surprisingly, the power increases
as the l in the linked families increases. We
applied a variety of different genetic models,
holding the l values constant. As discussed by
Olson [1995], the underlying genetic model can

TABLE III. Type I error rates: simulation results for nonparametric multipoint linkage analysis with 400 ASPs using
ordered subset analysis under no linkage (k¼l), and no covariate effect with 20–50% of the families linked (k41)a

Model number l/Linked l model
Mean overall
lod score

Mean maximum
subset lod score Mean D lod

Mean proportion of
families in subset Pðbppo:05Þ Pðbppo:01Þ

F 1.0 0.28 1.34 1.06 0.25 0.052 0.014
1 1.2/5.0 D 2.99 4.78 1.79 0.58 0.057 0.010
2 1.2/4.0 R 4.97 6.37 1.40 0.73 0.050 0.009
3 1.2/2.5 D 2.79 4.57 1.77 0.57 0.047 0.009
4 1.2/2.5R 4.19 5.72 1.53 0.68 0.049 0.010
5 1.2/2.5 A 2.69 4.47 1.78 0.55 0.045 0.008
6 1.2/1.5 A 2.58 4.38 1.80 0.54 0.050 0.008
7 1.4/2.3 A 6.19 7.46 1.27 0.78 0.043 0.010

aFor the simulations with l41, the trait-related covariate was distributed as a normal random variable. Models are described in Table I;
5,000 replicates were simulated per model.

TABLE IV. Power: simulation results for nonparametric multipoint linkage analysis with 400 ASPs using ordered subset
analysis with a proportion of the families linked (k41)a

Model number l/linked l model
Mean overall
lod score

Mean maximum
subset lod score

Mean D lod Mean proportion of
families in subset Pðbppo:05Þ Pðbppo:01Þ

1 1.2/5.0 D 2.65 13.16 10.51 0.22 0.964 0.910
2 1.2/4.0R 4.50 19.08 14.57 0.22 0.998 0.988
3 1.2/2.5 D 2.79 9.84 7.06 0.31 0.804 0.638
4 1.2/2.5 R 3.93 13.70 9.77 0.29 0.942 0.876
5 1.2/2.5 A 2.45 9.38 6.93 0.29 0.784 0.630
6 1.2/1.5 A 2.59 6.34 3.74 0.46 0.334 0.156
7 1.4/2.3 A 6.10 13.46 7.36 0.51 0.894 0.754

aThe trait-related covariate was distributed as a mixture of normals with means two standard deviations apart in the linked and unlinked
subsets. Models are described in Table I, 500 replicates were simulated per model.
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have a significant impact on the power to detect
linkage using nonparametric affected sibling pair
analysis. The OSA results reflect this difference as
seen by comparing the maximum lod scores,
maximum subset lod scores, and the OSA power
for genetic models with overall l¼1.2 or with
linked subset l¼2.5. The recessive models provide
more evidence for linkage across all measures.
However, even in the dominant and additive
models, when the subset is large (proportion of
linked families 50%) or when the linked subset l is
large (lZ2.5), OSA had greater than 78% power at
significance level 0.05 to detect the increased
evidence for linkage in the subset using the trait-
related covariate.
Table V compares the power of OSA to the

power of the admixture test as implemented in
HOMOG for detecting heterogeneity among the
families. The parametric model from the linked
subset was used as the analysis model to provide
the most information possible for detecting link-
age in these small families. The power of the test
of heterogeneity in the admixture model as
implemented in HOMOG is considerably lower
for all genetic models tested for these small
families. OSA, using the same family-specific
parametric two-point lod scores, provides sub-
stantially greater power than that observed with
the admixture test to detect heterogeneity using a
trait-related covariate. As in the multipoint non-
parametric case, the power varies substantially
across models.

DISCUSSION

We propose ordered subset analysis (OSA) as a
means to address the etiologic and genetic
heterogeneity in the analysis of complex genetic
traits. The goal of OSA is to identify genetically

more homogeneous subsets and to refine disease
gene location estimates. This method is a fast and
simple way to identify potentially interesting
subsets of families and to help prioritize the list
of candidate genes in a region. It can provide
direction for follow-up and confirmatory
analyses.
This work grew out of our attempts to perform

stratified linkage analysis on pre-specified subsets
based on disease-related covariates. When there is
solid a priori evidence for defining strata, proce-
dures such as the predivided sample test [Morton,
1955] should be used. However, when the strata
are less obvious it is difficult to choose and defend
cutpoints and even more difficult to interpret the
results. The advantage of OSA is that it does not
require pre-specified cutpoints but allows choices
based on the data and then performs a permuta-
tion test to evaluate the evidence for linkage in the
context of the results for the entire sample.
OSA is quite flexible; d and g can be held fixed

to highlight a specific location, d, or model, g.
In addition, ðZðbdd1;bgg1Þ . . . ZNðbddN;bggNÞÞ can be
plotted against the covariate values for the
families to get a graphic representation of the
change in the subset lod scores as families are
added [Hall et al., 1990]. OSA can use a variety of
covariates, including evidence for linkage at other
loci as suggested by Cox et al. [1999], and provides
empirical P values for these conditional analyses.
OSA is not limited to a single method of linkage
analysis but may be applied wherever grids of
additive linkage statistics by family can be
obtained [Watanabe et al., 1999]. For example,
Zi(d,g) may be any additive statistic including lod
scores, w2 values, or squared normal Z-scores.
The identification of the BRCA1 gene provided

an important example of the challenges inherent
in mapping complex human disease and of the
successes that could be obtained by careful

TABLE V. Simulation results for two-point parametric linkage analysis with 400 ASPs using ordered subset analysis and
the Admixture Test implemented in HOMOG with a subset of the families linked (k41)a

Model number l/linked l model Mean max HLOD
Mean chi-square
for heterogeneity Pðbppo:05Þ

Mean overall
lod score

Mean maximum
subset lod score Pðbppo:05Þ

1 1.2/5.0 D 5.92 3.68 0.50 �13.63 14.21 1.00
2 1.2/4.0 R 2.78 3.39 0.52 �32.08 10.89 0.98
3 1.2/2.5 D 2.37 1.42 0.20 �6.08 6.13 0.94
4 1.2/2.5 R 2.00 1.57 0.18 �10.98 6.35 0.94
5 1.2/2.5 A 2.04 1.40 0.20 �6.59 5.55 0.89
6 1.2/1.5 A 2.12 0.89 0.08 �0.05 4.12 0.72
7 1.4/2.3 A 4.28 1.58 0.24 �0.28 8.18 0.96

aThe trait-related covariate was distributed as a mixture of normals with means two standard deviations apart in the linked and unlinked
subsets. The generating model was used for the linkage analysis. Models are described in Table I, 500 replicates were simulated per model.
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examination of the data. The small empirical P
value obtained for the families with low mean age
of onset clearly rejected the null hypothesis that
these families are a random sample from families
with breast cancer. In reality, no P value was
necessary to identify the obvious clustering of
linkage evidence in the seven families with the
earliest mean age of onset of breast cancer [Hall et
al., 1990]. However, applying this paradigm to
studies of common diseases has been somewhat
more difficult because of the greater degree of
genetic heterogeneity and the smaller genetic
effects of single genes accompanied by the much
larger number of families required to detect them.
Thus, we sought a flexible test to identify
homogeneous subsets for further study.

OSA IN A GENOME SCREEN

An appealing feature of OSA in the genome
scan context is the ability to re-estimate the
disease gene location in the subset. When OSA is
used on genome screen data, the entire multipoint
lod score curves for each chromosome are used to
define the maximum subset lod score. Our OSA
software provides plot-ready files so that these
multipoint curves may be compared in the subset
and in the overall group. By re-estimating the
gene location in the maximum ordered subset, it
may be possible to narrow a large region of
linkage to something more manageable, with a
narrower one-lod down support interval [Ghosh
et al., 2000; Shao et al., 2003]. It may also happen
that the maximum likelihood disease gene loca-
tion in the subset may be quite different from the
maximum likelihood disease gene location in the
entire sample. In some cases, it may be desirable
to compare the OSA maximum subset lod score at
a particular point on a map, say at the estimated
disease gene location of the maximum in the
entire sample, to understand the contribution of
the covariate to evidence for linkage at that point.
Our OSA software allows for analysis of a
particular point and reports empirical P values
for the test at that point.

INTERPRETATION OF THE MAXIMUM
SUBSETS LOD SCORE

The maximum ordered subset lod score must be
at least as large as the maximum lod score in the
original sample. Thus, the value of the maximum
subset lod score is sensitive to the linkage
evidence in the total sample. If there is no
evidence for linkage in the total sample, the

empirical P value may be quite significant for a
subset showing only moderate evidence for
linkage. If there is substantial and perhaps diffuse
evidence for linkage, the P values for the
maximum subset lod score may not be significant.
While the P values may be disappointing in
themselves, the resulting subset may be useful in
suggesting a group for further study or for
refining the location in a diffuse area of linkage.
Thus, it is important to consider the significance
of a given result in the context of the overall
evidence for linkage. Cox et al. [1999] propose
examining the difference in the overall and
conditional lod scores (D lod) to evaluate the
effects of epistasis or genetic heterogeneity. As we
have shown, that idea may also be applied in
OSA.

COMPARISON TO OTHER METHODS

We compared the results of OSA to the results of
the admixture test for heterogeneity as implemen-
ted in HOMOG [Ott, 1983, 1999]. These results
demonstrate that when a covariate related to
evidence for linkage is identified, power to detect
linkage in subsets can be enhanced using OSA,
even when the overall genetic effect is low or
when the families are small. It is to be expected
that the power to detect the heterogeneity and to
identify a subset using the admixture test im-
plemented in HOMOG, which uses only the
evidence for linkage in each family, would be
low in the case of ASPs. When the families are
larger and more variability across the family-
specific lod scores is possible, as in the breast
cancer example, the admixture test will have
increased power to detect heterogeneity. However,
for the family samples collected to study common
complex genetic traits, OSA provides an addi-
tional means of identifying a subset of families
with increased evidence for linkage by accumulat-
ing that evidence across families with similar
covariate levels.
There have been a number of other recent

methods proposed to identify and control for
genetic heterogeneity. The conditional logistic
regression method of Olson [1999; Olson et al.,
2001] allows for modeling the relationship be-
tween evidence for linkage and dependence on
covariates. Goddard et al. [2001] showed how this
conditional logistic approach can be applied to a
genome screen and how the lod score, as a
function of a likelihood ratio test on proposed
models, can be increased as covariates are
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included in the model. Langefeld and colleagues
[Langefeld et al., 2001; Davis et al., 2001] propose
nonparametric linkage (NPL) regression to allow
conditional or simultaneous tests of multiple
genetic loci, phenotypic or environmental covari-
ates and their interactions. Bull et al. [2002]
propose modeling ASP IBD sharing probabilities
using covariates, including examination of experi-
ment-specific covariates such as plate assignment.
Devlin et al. [2002] apply mixture modeling
methods, similar to the original heterogeneity
models proposed by Smith [1963]. These modeling
approaches can be powerful for examining well-
defined models for specific genes or genetic
locations including covariates. OSA is a simpler
approach that can be easily applied to a wide
variety of covariates. As a screening tool, OSA
does not require a particular location or genetic
model to be chosen and, thus, provides greater
flexibility in detecting heterogeneity when hetero-
geneity might not be otherwise suspected on the
basis of overall lod scores.

SUITABLE COVARIATES

For many complex traits, there are multiple
choices of trait-related covariates to use in OSA.
This method is well suited to any quantitative
covariate, either continuous or ordered. The
covariate may be adjusted by variables such as
age and gender if they are known to influence the
value of the covariate. Analyses of data from the
FUSION study of the genetics of type 2 diabetes
used the mean of the covariate value in all
affected sibs to order the families [Ghosh et al.,
2000]. Other summary statistics such as the
sibship median, minimum, or maximum could
be used. Complex functions of the data could be
used, including results of data reduction techni-
ques, such as principal components or cluster
analysis [Merette et al., 1999; Shao et al., 2003] or
residuals from fitting a linear model [Tores et al.,
1999]. OSA may be applied to an ordinal
categorical covariate such as number of affected
family members or the proportion of family
members with the specific characteristic, such as
presence or absence of a specific allele, or
evidence for linkage at another locus [see also
Cox et al., 1999].

MULTIPLE COMPARISONS

We control for the inflation in the false positive
rate induced by examining multiple family sub-
sets for a given covariate by generating empirical

P values using a permutation test, which appears
to give the proper type 1 error rate in limited
simulations. However, we have not controlled for
ordered subset comparisons over multiple trait-
related covariates or multiple regions of the
genome as conditioning loci. It is likely that
correlation between some trait-related covariates
will be operating. This suggests that a Bonferroni-
type correction of the P value will be very
conservative. Due to the exploratory nature of
the analysis, we do not feel compelled to apply a
correction for multiple comparisons. We strive for
consistency of results across the various analyses
within our study as well as comparisons of results
to analyses performed by other groups. In the
absence of a correction for multiple comparisons,
we stress the hypothesis-generating nature of
these results and the need for follow-up.

POWER VS. SAMPLE SIZE

In analyses that subset the total data set, there is
an implicit tradeoff between the power to detect a
given effect and the decreasing sample size in the
subset. Leal and Ott [2000] show that if the
relative risk in the subset is close to one, then
the marginal increase in the genetic effect in the
strata does not offset the decrease in power due to
the reduced sample size. In this case, subsetting
the data will not help and only a large increase in
sample size will provide sufficient power to
detect small genetic effects. In what we present
here, we presume that the increase in the apparent
genetic effect afforded by increasing homogeneity
in the subset will offset the loss of power induced
by the reduced sample size [Kovac et al., 1999].
Another factor that impacts power for OSA is the
correlation between the evidence for linkage and
the levels of the covariate. Our simulations used a
large (two standard deviation) difference in the
means for the linked and unlinked ASPs. Addi-
tional simulations with a one standard deviation
difference in the means for linked and unlinked
ASPs suggest that, while there is a decrease in the
power, it is not substantial (e.g., 0.804 for 2SD vs.
0.778 for 1SD in the 1.2/2.5D model in Table IV).
We are continuing to explore sensitivity of OSA to
the covariate values in additional simulations. So
far, our power studies suggest that OSA has
reasonable power to detect a subset with in-
creased evidence for linkage when using a trait-
related continuous covariate. As a result OSA
appears to be a useful tool in the set of statistical
methods for the analysis of complex genetic traits.
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SUMMARY

We have developed the ordered subset method
to use trait-related covariates to identify a more
genetically homogeneous sample. We generate an
empirical p value to test the hypothesis that the
families providing the maximum subset evidence
for linkage are a random sample from all possible
ordered subsets. We believe that such analyses
will help identify homogenous sets of families
that will, in turn, provide better estimates of a
disease gene location. These families along with
the trait-related covariates may help prioritize
candidate genes in regions of linkage in these
families. We have developed software to perform
these analyses, which is available from the authors
via the internet.
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