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Insulin secretion has a crucial role in glucose homeostasis, 
and failure to secrete sufficient insulin is a hallmark of 
type 2 diabetes. Genome-wide association studies (GWAS) 
have identified loci contributing to insulin processing and 
secretion1,2; however, a substantial fraction of the genetic 
contribution remains undefined. To examine low-frequency 
(minor allele frequency (MAF) 0.5–5%) and rare (MAF <  
0.5%) nonsynonymous variants, we analyzed exome array 
data in 8,229 nondiabetic Finnish males using the Illumina 
HumanExome Beadchip. We identified low-frequency coding 
variants associated with fasting proinsulin concentrations at 
the SGSM2 and MADD GWAS loci and three new genes with 
low-frequency variants associated with fasting proinsulin or 
insulinogenic index: TBC1D30, KANK1 and PAM. We also show 
that the interpretation of single-variant and gene-based tests 
needs to consider the effects of noncoding SNPs both nearby 
and megabases away. This study demonstrates that exome array 
genotyping is a valuable approach to identify low-frequency 
variants that contribute to complex traits.

Exome sequencing studies have discovered many low-frequency 
and rare coding variants3 that have yet to be examined systemati-
cally for association with complex traits. To determine the role of 
low-frequency coding variants in traits reflecting pancreatic β-cell 
function, insulin sensitivity and glycemia, we evaluated putative 
functional coding variants selected from the exome sequences of 
>12,000 individuals (see Online Methods for a description of the 
exome array design and content). We successfully genotyped 9,660 
Finnish participants in the population-based Metabolic Syndrome 
in Men (METSIM) study4 for 247,870 variants on the Illumina 

HumanExome Beadchip. Clinical characteristics of 8,229 analyzed 
nondiabetic study participants are summarized in Supplementary 
Table 1. Among 242,071 variants passing quality control, 89,864 
(38.1%) were variable in the studied individuals; of these, 71,077 were 
nonsynonymous, nonsense or located in splice sites (Supplementary 
Table 2). We tested 59,029 variants with MAF > 0.05% for associa-
tion with insulin processing, secretion and glycemic traits, assuming 
additive allelic effects and using a linear mixed model to account for 
relatedness among study participants5.

We first evaluated rare and low-frequency coding variants at the 
nine signals previously identified by GWAS for fasting proinsulin 
concentration adjusted for fasting insulin (hereafter referred to as 
fasting proinsulin)1. To recognize independent association signals, 
we carried out conditional analysis adjusting for the known GWAS 
variants, all of which were represented on the exome array and rep-
licated in METSIM (P < 0.01; Fig. 1 and Supplementary Table 3). 
Coding low-frequency variants at the known SGSM2 and MADD loci 
showed strong evidence of association (P < 5 × 10−8; Table 1 and 
Supplementary Figs. 1 and 2). Previous studies highlighted several 
possible candidate genes at these loci1,6,7.

At SGSM2, rs61741902 (MAF = 1.4%, P = 8.9 × 10−10) encodes 
p.Val996Ile and is independent of the GWAS variant rs4790333 
(Pconditional = 4.8 × 10−10, r2 = 0.001; Table 1, Fig. 1 and Supplementary 
Table 4). SGSM2 (small G protein signaling modulator 2) is a GTPase 
activating protein (GAP) that interacts with members of the Rab and 
Rap small G protein pathways and may act in a cascade of Rab-mediated 
steps in insulin secretory vesicle transport8–10. At rs61741902, the ref-
erence valine is well conserved across vertebrates, and the isoleucine 
substitution is predicted to be damaging (Supplementary Table 5). 
Each additional copy of the minor allele was associated with an average 
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increase of 0.41 s.d. in fasting proinsulin 
concentration (Table 1 and Supplementary 
Fig. 2). However, the proportion of the 
trait variability explained remained modest 
(0.47%; 95% confidence interval (CI) 0.22–0.82%) because of the low 
MAF. Identification of an independent and plausibly functional vari-
ant suggests that SGSM2 is the causal gene underlying the common 
fasting proinsulin GWAS signal.

At MADD, rs35233100 (MAF = 3.7%, P = 7.6 × 10−15) creates the 
stop codon p.Arg766X, is in modest linkage disequilibrium (LD) with 
the lead GWAS variant rs7944584 (Pconditional = 0.0001, r2 = 0.17) and is 
independent of the second GWAS variant rs1051006 (Pconditional = 5.0 ×  
10−16, r2 = 0.02). The nonsense allele of rs35233100, which is associ-
ated with decreased proinsulin concentration, is observed only on 
haplotypes containing the proinsulin-decreasing allele of rs7944584. 
Adjusting for one variant in a conditional analysis decreased, but did 
not eliminate, the association for the other (P = 4.9 × 10−25, Pconditional =  
5.7 × 10−15 for rs7944584; Table 1 and Supplementary Table 4), 
suggesting biological contributions from the nonsense variant and 
an additional causal variant tagged by rs7944584. Of note, the trait-
decreasing alleles of the two common GWAS-identified variants 
rs7944584 and rs1051006 tended to occur on different haplotypes, 
causing the evidence of association for either SNP to become mark-
edly more significant when adjusting for the other (rs1051006, P = 
0.033, Pconditional = 2.7 × 10−8; rs7944584, P = 4.9 × 10−25, Pconditional =  
8.3 × 10−31; Supplementary Table 4). Although the conditional asso-
ciation for the nonsense variant only achieved suggestive significance 
(P = 0.0001), it provides an especially plausible functional effect. The 
MADD nonsense variant is located in exon 13 of 36, suggesting that 
the mRNA would be targeted for nonsense-mediated decay11. MADD 
can act as a guanine nucleotide exchange factor for RAB3 proteins, 
including RAB3A and RAB3B12, which are crucial for insulin exo
cytosis13,14. Identification of a nonsense variant that contributes to 
the evidence of association suggests that MADD is a causal gene under
lying the common GWAS signals.

LD at chromosome 11 from 46–57 Mb and encompassing MADD 
has been reported to extend long distances15. Consistent with this, 
we noted significant or suggestive (P < 1 × 10−5) association of fasting 
proinsulin concentration with nonsynonymous variants up to ~9 Mb 

away from the lead (noncoding) GWAS variant. Proinsulin-associated 
variants included rs628524, located ~9 Mb away and encoding 
p.Ser171Asn in the olfactory receptor OR5M11 (P = 3.7 × 10−6 for 
fasting proinsulin and P values as low as 5.0 × 10−10 for related traits), 
and rs7941404, located 376 kb away and encoding p.Arg349His in 
AGBL2 (MAF = 11.8%, P = 4.7 × 10−21). After adjusting for the three 
MADD variants (rs7944584, rs1051006 and rs35233100), the signifi-
cances of the associations of the distant variants were reduced by 5–18 
orders of magnitude (Fig. 2 and Supplementary Table 6). That these 
associations were not eliminated suggests that additional variant(s) 
in this region remain to be identified or that we may be adjusting for 
imperfect proxies of causal variants. These results also demonstrate 
that LD should be considered when interpreting GWAS results in this 
region. For example, the recently reported16 fasting glucose locus at 
OR4S1, represented by rs1483121, is in LD (r2 = 0.19) with the lead 
and nonsense MADD SNPs ~1 Mb away (Supplementary Table 6).

We next tested coding variants across the genome for association 
with 19 traits measuring pancreatic β-cell function, insulin sensitiv-
ity and glucose concentration. We identified two genes harboring 
low-frequency nonsynonymous variants with new associations for 
fasting proinsulin concentration: rs150781447, encoding TBC1D30 
p.Arg279Cys (MAF = 2.0%, P = 5.5 × 10−11), and rs3824420, encoding 
KANK1 p.Arg667His (MAF = 3.0%, P = 1.3 × 10−8). The TBC1D30 
variant was most strongly associated with late-phase proinsulin-to-
insulin conversion (proinsulin area under the curve (AUC)30–120;  
P = 1.3 × 10−16), and the KANK1 variant was most strongly associ-
ated with early phase proinsulin-to-insulin conversion (proinsulin 
AUC0–30; P = 1.6 × 10−9) (Table 2, Supplementary Fig. 1 and Online 
Methods). The TBC1D30 variant effect is large, with each additional 
copy of the minor allele resulting in an average increase of 0.50 s.d. in 
the proinsulin AUC30–120 value (Table 2 and Supplementary Fig. 2). 
This variant explained 0.94% of the trait variability (95% CI 0.55–
1.44%). We also found a new locus for insulin secretion, as measured 
by the insulinogenic index, represented by nonsynonymous SNPs 
in PAM (smallest P = 1.9 × 10−8) and PPIP5K2, which are located  
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Figure 1  Manhattan plot for the fasting 
proinsulin analysis. Association results of the 
single-variant analysis (−log10 P) are plotted 
against genomic position (NCBI build 37). 
Previously identified loci are in blue, and loci 
identified by the current study are in red. 
Fasting proinsulin concentrations were log 
transformed and adjusted for fasting insulin, 
body mass index, age and age squared. 
VPS13C/C2CD4A/B means VPS13C, C2CD4A 
or C2CD4B.

Table 1  New low-frequency variants at fasting proinsulin loci previously identified by GWAS

SNP Gene Variant Chr. Positiona Minor/major allele MAF b̂ ± s.e.m. Effect sizeb

Proportion of 
trait variance 

explained P Pconditional

rs61741902 SGSM2 p.Val996Ile 17 2,282,779 A/G 0.014 0.126 ± 0.021 0.41 ± 0.07 0.0047 8.7 × 10−10 4.8 × 10−10

rs35233100 MADD p.Arg766X 11 47,306,630 T/C 0.037 −0.100 ± 0.013 −0.32 ± 0.04 0.0075 7.6 × 10−15 0.0001

Fasting proinsulin concentrations were log transformed and adjusted for fasting insulin, BMI, age and age squared; data shown are from an analysis of 8,224 nondiabetic males. 
Effects are reported for the minor allele. β̂ coefficient units are ln(pmol/l). Pconditional values are reported after adjusting for the lead SNPs from GWAS signals (rs4790333 at 
SGSM2 and rs7944584 and rs1051006 at MADD). Full results of the conditional analysis are provided in Supplementary Table 4. For rs35233100, the effect size in s.d. units 
(± s.e.m.) and the proportion of trait variance explained after adjusting for rs7944584 and rs1051006, are −0.17 (± 0.05) and 0.0007, respectively.
aPositions are given in bp from NCBI build 37, with allele labels from the forward strand. bEffect sizes are given in s.d. units ± s.e.m. Chr., chromosome.
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200 kb apart; each have MAF = 5.3% and are in near-perfect LD with 
each other (r2 = 0.997) (Table 2 and Supplementary Figs. 1–3).

Common SNPs at GPSM1, HNF1A and ABO that have been pre-
viously associated with other traits are here associated with insu-
lin secretion or β-cell function in nondiabetic individuals (Table 2 
and Supplementary Fig. 3). GPSM1 p.Ser391Leu is in LD with the 
noncoding SNP rs3829109 (r2 = 0.69), which has been previously 
associated with fasting glucose concentration2. At ABO, the T allele 
of rs505922 is a proxy for the O blood group and has been associated 
with diverse phenotypes, including decreased pancreatic cancer risk17 
and increased risk for duodenal ulcers18. Near HNF1A, rs2650000 
was previously associated with low-density lipoprotein cholesterol19 
and C-reactive protein20; other HNF1A variants are associated with 
MODY3 (MIM#600496) and type 2 diabetes risk21.

TBC1D30 and KANK1 both function in G-protein signaling and 
are strong biological candidates for affecting fasting proinsulin con-
centration. TBC1D30 (encoding TBC 1 domain family, member 30) 
encodes a GAP protein that probably regulates the activity of specific 
Rab GTPases, including RAB3A22 and RAB8A23. Rab3A knockout 
mice show a severe decrease in glucose-induced first-phase insulin 
release and a 75% decrease in plasma insulin concentrations without 
insulin resistance24. The reference arginine at rs150781447 is well 
conserved across vertebrate species, and the cysteine substitution is 
predicted to be damaging25 (Supplementary Table 5). The variant 
is located within a Rab-GAP domain and the Kozak sequence of one 
TBC1D30 isoform and may alter translation initiation.

KANK1 (KN motif and ankyrin repeat domain-containing protein 1)  
has a role in cytoskeleton formation by regulating actin polymeriza
tion26, and it negatively regulates Rac1 and RhoA G protein sig
naling, pathways that have been implicated in insulin secretion27,28.  
At rs3824420, the reference arginine is not well conserved across  
species, and the protein structure is predicted to tolerate the histidine 
substitution without an effect on function; this variant may still affect 
KANK1 or may tag another nearby variant. Although rs3824420 has 
a low frequency in Europeans (MAF = 2.9% in Finns), it is common 
in east Asians (MAF = 16%; Supplementary Table 7).

PAM encodes the peptidylglycine α-amidating monooxygenase, 
an essential secretory granule membrane enzyme that catalyzes  
α-amidation of peptide hormones such as proinsulin29. Older 
mice heterozygous for Pam deficiency have glucose intolerance30.  
At rs35658696, the reference aspartic acid is well conserved across 
vertebrates and is located in one of the catalytic domains, and the  
glycine substitution is predicted to be damaging (Supplementary 
Table 5). The nearby gene PPIP5K2 is involved in cell signaling but 
has no known connection to insulin pathways. At rs36046591 in 
PPIP5K2, which is in near-perfect LD (r2 = 0.997) with rs35658696, 
the glycine substitution is predicted to be tolerated, and the reference 
serine is not well conserved across species. This difference suggests 
that the PAM variant, rather than the PPIP5K2 variant, is causal at the 
locus, but it is impossible to dissect the two genetically.

We then carried out gene-based tests to further investigate the role 
of rare and low-frequency variants in insulin secretion and process-
ing. Gene-based tests offer an alternative to single-variant tests, which 
are often underpowered to detect association with rare variants.  
We performed our tests on trait residuals adjusted for relatedness and 
covariates (Online Methods). To address the impact of less common 
and rare variants, we considered only SNPs with MAF < 3% or MAF <  
1%. In total, we tested 10,515 genes having at least two such variants 
using the sequence kernel association optimal (SKAT-O) test31.
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Figure 2  MADD is located in a region of unusually high LD on 
chromosome 11 at 46–57 Mb. (a,b) Regional association results of the 
single-variant analysis (−log10 P) are plotted against genomic position 
(NCBI build 37) for fasting proinsulin concentration before (a) and 
after (b) adjustment of the lead SNPs for the common GWAS signals 
(rs7944584 and rs1051006) and the nonsense variant rs35233100 
(MAF = 3.7%) at MADD. Fasting proinsulin concentrations were log 
transformed and adjusted for fasting insulin, body mass index, age and 
age squared. The conditioning SNPs are in blue, and SNPs highlighted or 
discussed in the text are in red. For clarity, only a portion of the 11-Mb 
region and a subset of the genes are shown.

Table 2  New loci for insulin processing and secretion

SNP Gene Variant Chr. Positiona
Minor/major  

allele MAF Lead trait b̂ ± s.e.m. Effect sizeb

Proportion of 
trait variance 

explained P

Identified by low-frequency variants
rs150781447 TBC1D30 p.Arg279Cys 12 65,224,220 T/C 0.020 Proinsulin AUC30–120 0.204 ± 0.025 0.50 ± 0.06 0.0094 1.3 × 10−16

rs3824420 KANK1 p.Arg667His   9 712,766 A/G 0.029 Proinsulin AUC0–30 0.107 ± 0.018 0.28 ± 0.05 0.0045 1.6 × 10−9

rs35658696 PAM p.Asp563Gly   5 102,338,811 G/A 0.053 Insulinogenic index –0.152 ± 0.027 –0.21 ± 0.04 0.0044 1.9 × 10−8

rs36046591 PPIP5K2 p.Ser1228Gly   5 102,537,285 G/A 0.053 Insulinogenic index –0.152 ± 0.027 −0.21 ± 0.04 0.0043 2.3 × 10−8

Identified by common variants
rs2650000 HNF1A Intergenic 12 121,388,962 A/C 0.455 Insulinogenic index –0.076 ± 0.012 –0.10 ± 0.02 0.0054 5.0 × 10−10

rs505922 ABO Intronic   9 136,149,229 C/T 0.471 Disposition index –0.038 ± 0.006 –0.09 ± 0.02 0.0043 3.8 × 10−9

rs60980157 GPSM1 p.Ser391Leu   9 139,235,415 T/C 0.300 Insulinogenic index 0.072 ± 0.013 0.10 ± 0.02 0.0041 1.4 × 10−8

The data shown are based on an analysis of 8,103–8,191 (depending on phenotype availability) nondiabetic males. The lead trait is the trait with smallest P value. Traits were log 
transformed and adjusted for BMI, age and age squared. Effects are reported for the minor allele. The SNPs at PAM and PPIP5K2 are tightly linked (D ′ = 0.999, r 2 = 0.997).
aPositions are given in bp from NCBI build 37, with allele labels from the forward strand. bEffect sizes are given in s.d. units ± s.e.m. Chr., chromosome.
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We found significant associations between fasting proinsulin con-
centration and TBC1D30, SGSM2 and ATG13 when using a MAF 
upper bound of 3% (Table 3 and Supplementary Fig. 4); by condi-
tioning on the low-frequency variants detected by single-variant anal-
ysis, we demonstrated that these signals are driven by low-frequency 
variants. After adjusting for the common and nonsense variant signals 
at MADD, the significance of the association at ATG13, ~609 kb away, 
decreased by five orders of magnitude (Table 3), showing that this 
signal is partially driven by the MADD variants and suggesting that 
other variants in this region remain to be identified or that we may 
be adjusting for imperfect proxies of the causal variant. We detected 
no additional associations with other traits, including type 2 diabetes 
(data not shown).

In summary, we identified two low-frequency coding variants in 
genes at known loci and three new genes with low-frequency vari-
ants associated with insulin processing or secretion. At least four of 
these genes have roles in G-protein signaling (Supplementary Fig. 5). 
We show that the interpretation of both single-variant and gene-
based tests needs to consider the effects of distant common SNPs, 
an especially important consideration when exome sequence data 
are analyzed without data on the surrounding noncoding regions. 
Although regions of long-range LD are unusual, at least 24 have been 
reported15 to extend >1 Mb in Europeans, a distance frequently used 
to claim independence of association signals in GWAS meta-analyses. 
Several of the identified exome array variants are plausibly functional, 
although ~25% and ~28% of low-frequency nonsynonymous variants 
on the exome array were annotated as conserved and plausibly damag-
ing, respectively (Supplementary Table 2), and the exome array does 
not provide complete coverage of all functional variants at each locus. 
This study was also limited in its ability to look at very rare variants 
because of the content of the exome array. Although sequencing will 
still be required to completely assess variants associated with insulin 
processing, secretion and glycemic traits, this study provides proof 
of principle that exome array genotyping is a powerful approach to 
identify low-frequency functional variants and fine map GWAS- 
identified loci in complex traits.

URLs. Exome array design, http://genome.sph.umich.edu/wiki/
Exome_Chip_Design; Complete Genomics 69 Genomes Data, 
http://www.completegenomics.com/public-data/69-Genomes/;  
The 1000 Genomes Project, www.1000genomes.org/; PLINK, http://
pngu.mgh.harvard.edu/~purcell/plink/; SMARTPCA, http://genetics.
med.harvard.edu/reich/Reich_Lab/Software.html; EMMAX, http://
genetics.cs.ucla.edu/emmax/; GenABEL, http://www.genabel.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Study participants. We attempted exome array genotyping of 9,717 partici-
pants in the METSIM study4. Male study participants were randomly selected 
from the population register of Kuopio, eastern Finland (population 95,000). 
Participants undertook a 1-d outpatient visit to the Clinical Research Unit at 
the University of Kuopio. Participants with diagnosed type 1 or type 2 diabetes 
(previously diagnosed, on diabetes medication, fasting glucose ≥7 mmol/l or 
2-h glucose ≥11.1 mmol/l) were excluded from the quantitative trait analysis. 
Clinical characteristics of the nondiabetic study participants are provided in 
Supplementary Table 1. The study was approved by the ethics committee of 
the University of Kuopio and Kuopio University Hospital; informed consent 
was obtained from all study participants.

Oral glucose tolerance testing and laboratory measurements. Clinical 
testing was performed after a 12-h overnight fast. A 2-h oral 75-g glu-
cose tolerance test (OGTT) was performed with blood samples drawn at  
0, 30 and 120 min for measurement of plasma proinsulin, insulin and glucose 
concentrations. Plasma-specific proinsulin (Human Proinsulin RIA kit, Linco 
Research, St. Charles, MO; no crossreaction with insulin or C-peptide) and 
insulin (ADVIA Centaur Insulin IRI, 02230141, Siemens Medical Solutions 
Diagnostics, Tarrytown, NY; minimal crossreaction with proinsulin or  
C-peptide) were measured by immunoassay, and plasma glucose was mea
sured by enzymatic hexokinase photometric assay (Konelab System Reagents, 
Thermo Fisher Scientific, Vantaa, Finland).

Phenotypes. Association results are reported for five traits: fasting proin-
sulin (adjusted for fasting insulin), early phase (proinsulin AUC0–30) and 
late-phase (proinsulin AUC30–120) glucose-stimulated proinsulin-to-insulin 
conversion measured as proinsulin AUC during the first 30 min (AUC0–30)  
and the remaining 90 min (AUC30–120) of an OGTT, insulin secretion assessed 
by the insulinogenic index32 and a disposition index measure of β-cell com-
pensation for insulin resistance defined as insulin AUC0–30/glucose AUC0–30 ×  
Matsuda index of insulin sensitivity (Matsuda ISI)4,33. The reported asso-
ciations were discovered by analyzing a total of 19 traits. Other measures 
of β-cell function included: oral glucose–﻿stimulated proinsulin-to-insulin 
conversion during the first 30 min (proinsulin AUC0–30/insulin AUC0–30) 
and 30–120 min (proinsulin AUC30–120/insulin AUC30–120) of the OGTT, 
unadjusted fasting proinsulin, fasting proinsulin-to-insulin ratio, homeostasis 
model assessment of β-cell function (HOMA-β)34, fasting insulin, insulin 
at 120 min, insulin AUC during the first 30 min (insulin AUC0–30) and  
30–120 min (insulin AUC30–120) and early phase glucose-stimulated insulin  
release (insulin AUC0–30/glucose AUC0–30) adjusted for Matsuda ISI35. 
Indices of insulin sensitivity included HOMA of insulin resistance  
(HOMA-IR)34 and the Matsuda ISI36. Associations with fasting and 120-min 
glucose were also tested. Supplementary Figure 6 shows correlations among 
traits. We calculated AUC measures using the trapezoid rule.

Exome array. The Illumina HumanExome-12v1_A Beadchip includes 247,870 
markers focused on protein-altering variants selected from >12,000 exome 
and genome sequences representing multiple ethnicities and complex traits. 
Nonsynonymous variants had to be observed three or more times in at least 
two studies, and splicing and stop-altering variants had to be observed two 
or more times in at least two studies. Additional array content includes vari-
ants associated with complex traits in previous GWAS, HLA tags, ancestry-
informative markers, markers for identity-by-descent estimation and random 
synonymous SNPs. Details about SNP content and selection strategies can be 
found at the exome array design webpage (see URLs).

Genotyping and quality control. In total, 9,717 study samples, 104 blind 
duplicate samples and 116 HapMap samples of different ethnicities were 
genotyped at the GRCF at Johns Hopkins Institute of Genetic Medicine. 
Genotype calling was carried out using Illumina’s GenTrain version 1.0 clus-
tering algorithm in GenomeStudio version 2011.1. Cluster boundaries were 
determined using study samples. After clustering, 5,574 nonautosomal and 
3,379 autosomal variants identified through filtering strategies developed 
at GRCF were manually reviewed, and clusters were edited as necessary. 
After technical failure and marker-level quality control, 242,458 of 247,870 

(97.8%) attempted markers were successfully genotyped and had call rates 
>95% (average call rate, 99.95%).

We evaluated genotyping quality using concordance rates for HapMap sam-
ples genotyped in our study and either (i) sequenced by Complete Genomics 
or the 1000 Genomes Project (on-target regions of integrated phase 1 release; 
see URLs) or (ii) genotyped on the Illumina HumanOmni2.5 Beadchip by the 
1000 Genomes Project. These comparisons were based on 60,574, 117,063 and 
39,056 overlapping variants and 17, 49 and 86 individuals, respectively. Overall 
concordance rates were 99.933%, 99.972% and 99.956% for the Complete 
Genomics data, 1000 Genomes sequence data and HumanOmni2.5 Beadchip 
data, respectively. Considering the external data as truth, concordance rates 
for homozygous genotypes were 99.982%, 99.987% and 99.974% and were 
99.678%, 99.529% and 99.886% for heterozygous genotypes, respectively.

In total, 9,660 of 9,717 (99.4%) individuals were successfully genotyped 
(call rate >98%). For the 242,458 SNPs that passed quality control, genotype 
concordance among the 104 blind duplicate sample pairs was 99.998%. Three 
sex-mismatched individuals were identified and excluded from subsequent 
analyses. One individual per pair of six known twin pairs, and six unexplained 
apparent duplicates were excluded.

We carried out principal components analysis (PCA) twice, once excluding 
HapMap samples to identify population outliers and once including HapMap 
samples to help interpret outliers. To avoid artifactual results caused by 
family relatedness37, we computed principal components using SNP load-
ings estimated from a subset of 7,304 not-close relatives. We defined close 
relatives as those for whom the estimated genome-wide identity-by-descent 
(IBD) proportion of alleles shared was >0.10. We estimated IBD sharing using 
PLINK’s ‘-genome’ option38 and carried out PCA using SMARTPCA37 on an 
LD-pruned set of 22,464 autosomal SNPs obtained by removing large-scale 
high-LD regions15,39, SNPs with MAF < 0.01 or SNPs with Hardy-Weinberg 
equilibrium (HWE) P < 10−6 and carrying out LD pruning using the PLINK 
option ‘-indep-pairwise 50 5 0.2’. Inspecting the first ten principal components, 
we identified 12 population outliers, 9 of whom had self-reported non-Finnish 
ancestry; we excluded these 12 individuals from subsequent analyses. After 
further removal of 25 individuals with diagnosed type 1 diabetes, 1,376 indi-
viduals with type 2 diabetes and 3 individuals with missing phenotypes, 8,229 
individuals remained for quantitative trait analysis.

Statistical analyses. Single-variant analysis. We tested for trait-SNP associa-
tions assuming an additive genetic model using a linear mixed model to cor-
rect for relatedness using EMMAX5. We excluded SNPs with MAF < 0.05% 
or HWE P < 10−6. To reduce the impact of outliers, we log transformed traits 
with skewed distributions and then Winsorized all traits at 5 s.d. from the 
mean. All traits were adjusted for BMI, age and age squared before association  
testing. We analyzed both untransformed residuals and rank-based  
inverse-normal–transformed residuals to assess the robustness of associa-
tion results to distributional assumptions. As no appreciable differences were 
observed between the two analyses, we report the results for the untransformed 
residuals. We then visually inspected genotype cluster plots and checked HWE  
P values for all described variants. The lowest HWE P value for a reported 
newly associated variant was 0.09.

Population stratification. To correct for population stratification, we mod-
eled population structure as part of the random effects indistinguishable 
from the relatedness effect5. To investigate residual population stratifi-
cation, we calculated genomic control inflation factors40 and inspected 
quantile-quantile plots for test statistics both before and after removal of 
established and newly discovered loci (2-Mb segments centered on the lead 
SNPs) (Supplementary Fig. 7).

Conditional analysis. To identify additional association signals after 
accounting for the effects of known and newly discovered trait loci, we car-
ried out conditional analyses in which we included the allele count at the 
lead SNP(s) at the conditioning loci as covariate(s). To allow discovery of 
more than two association signals per locus, we used a stepwise procedure in 
which additional SNPs were added to the model according to their conditional  
P value, as programmed in EMMAX5. We estimated the LD metrics r 2 and D′ 
using 9,633 individuals from METSIM who passed genotyping quality control. 
LD with SNPs not included on the exome array was determined on the basis of 
whole-genome sequence data for 1,479 northern European individuals.
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Gene-based analysis. For gene-based testing, we used the SKAT-O31 test, 
which encompasses burden tests and SKAT41 as special cases. SKAT-O has 
been shown to perform well under a range of scenarios, including scenarios in 
which protective, deleterious and null variants are present and those in which 
a large number of variants are causal and associated in the same direction31. 
To account for relatedness, we adopted an approach similar to GRAMMAR42 
by first obtaining trait residuals adjusted for relatedness using GenABEL43 and 
then carrying out gene-based testing. We performed analyses using default 
weights31 and MAF upper bounds of 1% and 3% for the combination of non-
synonymous, stop-altering and splice-site variants. In total, 10,515 genes with 
at least two variants were tested. The results of the naive SKAT-O analysis and 
the analysis adjusted for relatedness were highly correlated (Supplementary 
Fig. 8). To evaluate whether common or low-frequency SNPs associated with 
the trait in the single-variant analysis could account for a gene-based test 
signal, we also carried out conditional analyses by including the allele count 
at such SNP(s) as covariate(s).

Statistical significance. We declared a single variant-trait association signifi-
cant if the nominal P value was <4.46 × 10−8, corresponding to a Bonferroni 
correction for 1,121,551 tests (19 phenotypes × 59,029 variants). We 
declared a gene-based test association significant if the nominal P value was  
<2.50 × 10−7, corresponding to a Bonferroni correction for 199,785 tests  
(19 phenotypes × 10,515 genes).

Annotation. We annotated variants relative to GENCODE version 7 
coding transcripts44 using in-house developed software (unpublished). 
Amino acid substitution positions are relative to the canonical UniProt  
protein sequence45.
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