
Power and Robustness of Linkage Tests for Quantitative Traits in
General Pedigrees

Wei-Min Chen,1n Karl W. Broman,1 and Kung-Yee Liang1,2

1Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
2Division of Biostatistics and Bioinformatics, National Health Research Institutes, Taipei, Taiwan

There are numerous statistical methods for quantitative trait linkage analysis in human studies. An ideal such method
would have high power to detect genetic loci contributing to the trait, would be robust to non-normality in the phenotype
distribution, would be appropriate for general pedigrees, would allow the incorporation of environmental covariates, and
would be appropriate in the presence of selective sampling. We recently described a general framework for quantitative trait
linkage analysis, based on generalized estimating equations, for which many current methods are special cases. This
procedure is appropriate for general pedigrees and easily accommodates environmental covariates. In this report, we use
computer simulations to investigate the power and robustness of a variety of linkage test statistics built upon our general
framework. We also propose two novel test statistics that take account of higher moments of the phenotype distribution, in
order to accommodate non-normality. These new linkage tests are shown to have high power and to be robust to non-
normality. While we have not yet examined the performance of our procedures in the context of selective sampling via
computer simulations, the proposed tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis
method. Genet. Epidemiol. 28:11–23, 2005. & 2004 Wiley-Liss, Inc.
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INTRODUCTION

Many human disease phenotypes are inherently
quantitative (e.g., hypertension). Others are gen-
erally viewed as dichotomous (e.g., diabetes) but
are closely associated with intermediate quantita-
tive phenotypes (e.g., glucose tolerance). Numer-
ous statistical methods have been developed
for linkage analysis of quantitative traits in
human studies [reviewed in Feingold, 2001,
2002]. Haseman-Elston regression [Haseman and
Elston, 1972] was one of the first such methods
and remains widely used. In this approach, the
squared differences between the quantitative
phenotypes in sibling pairs are regressed upon
the estimated proportion of alleles that they share
identical by descent (IBD). A statistically signifi-
cant negative slope in the regression indicates
linkage to a quantitative trait locus (QTL). Based
on an observation by Wright [1997], a number of
extensions to Haseman-Elston regression, which

extract additional information from the sibling
pairs’ phenotypes, have been proposed [Drigalen-
ko, 1998; Elston et al., 2000; Xu et al., 2000; Forrest,
2001; Sham and Purcell, 2001]. Haseman-Elston
regression has also been extended for use with
larger sibships [Olson and Wijsman, 1993].
A second approach for quantitative trait linkage

analysis in human pedigrees involves the use
of variance components models [Amos, 1994;
Almasy and Blangero, 1998]. The quantitative
phenotypes for the individuals in a pedigree are
assumed to follow a multivariate normal distribu-
tion, with the correlation between relatives’ pheno-
types depending on the proportion of alleles IBD at
a putative QTL. The variance components ap-
proach has been shown to have essentially optimal
power in the case that the normal model is correct
[Feingold, 2001], but is not robust to departures
from normality: when the normal model is not
correct, the type I error rate for the test of linkage
can be greatly inflated [Allison et al., 1999].
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A third approach involves the use of score tests
[Tang and Siegmund, 2001; Putter et al., 2002;
Wang and Huang, 2002a]. Such score tests have
the advantage that, while they are based on a
normal model, they can be made robust to
departures from normality. Finally, Sham et al.
[2002] described a regression-based approach in
which the roles of the phenotype and IBD status
are interchanged: IBD status is regressed upon the
quantitative phenotype. This approach has been
shown to be both powerful and robust.
Chen et al. [2004] described a general frame-

work for quantitative trait linkage analysis in
human pedigrees, for which many of the above
approaches are special cases. The framework
makes use of generalized estimating equations
(GEE) [Liang and Zeger, 1986], in which one must
specify a working covariance matrix. Different
choices of this working covariance matrix lead to
different methods, and, in particular, one may
specify working covariance matrices so that this
GEE method is identical to Haseman-Elston
regression, certain extensions to Haseman-Elston
regression [including those of Sham and Purcell,
2001, and Olson and Wijsman, 1993], and the
variance components approach. Under the GEE
framework, one obtains estimates of the various
genetic parameters, with different choices of the
working covariance matrix leading to different
estimates. There is additional flexibility in the
choice of linkage test statistic.
T. Cuenco et al. [2003] and Szatkiewicz et al.

[2003] used computer simulations to investigate
the relative performance, in terms of power and
robustness, of essentially all available approaches
for quantitative trait linkage analysis in sibling
pairs, with particular emphasis on the case of
selected samples. In this report, we extend their
research to investigate a variety of approaches for
quantitative trait linkage analysis in sibships and
extended pedigrees, though we focus exclusively
on the case of random ascertainment. We make
use of the general GEE framework of Chen et al.
[2004], and investigate the power and robustness
of a wide variety of test statistics, including the
likelihood ratio test, Wald tests, score tests, and
robust versions of these statistics.
In addition, we propose two additional test

statistics that take account of the higher moments
(skewness and kurtosis) of the phenotype dis-
tribution, in order to accommodate non-normality.
These new linkage tests are shown to be robust to
non-normality but maintain the power of the
variance components method.

METHODS

Chen et al. [2004] described a general framework
for quantitative trait linkage analysis in general
pedigrees that makes use of generalized estimating
equations (GEE) and for which many of the
current quantitative trait linkage methods are
special cases, corresponding to different choices
for a working covariance matrix. The approach has
considerable flexibility, both in the choice of
working covariance matrix and in the ultimate
choice of test statistic. In this section, we describe a
variety of linkage tests based on this general
framework. In the following section, we present
the results of computer simulations to investigate
the power and robustness of these statistics.
Consider a set of general pedigrees with no

inbreeding, and let yki denote the quantitative
phenotype for the ith individual in the kth
pedigree. Let Fkij and Dkij denote the kinship and
fraternity coefficients, respectively, for individuals
i and j in pedigree k, and let p̂pkij and k̂kkij denote
their expected proportion of alleles shared IBD
and the probability that they share 2 alleles IBD,
respectively, at a putative QTL, given multipoint
marker data. Let s2a and s2d denote the additive and
dominance variance, respectively, due to a puta-
tive QTL, and let s2pa, s

2
pd, s

2
s , and s2e denote the

additive polygenic variance, dominance polygenic
variance, shared environmental variance, and
non-shared residual environmental variance, re-
spectively. Define ra ¼ ðs2a þ s2paÞ=2s2, rd ¼ ðs2dþ
s2pdÞ=4s2, and rs ¼ s2s=s

2. Note that ra þ rs is the
phenotypic correlation for parent-child pairs, and
ra þ rd þ rs is the phenotypic correlation for
sibling pairs.
While our general GEE method allows the easy

incorporation of environmental covariates, we
will focus here on the simple case of no covariates,
and we further assume that the population mean
phenotype is known. Without loss of generality,
we assume EðykiÞ ¼ EðykijMkiÞ ¼ 0, where Mki

denotes the available multipoint marker data for
individual i in pedigree k. The covariance of the
phenotypes for individuals i and j in pedigree k is

O0
kij ¼

s2 i ¼ j
ð4Fkijra þ 4Dkijrd þ rsÞs2 i 6¼ j

�

The covariance of the phenotypes for individuals i
and j in pedigree k, conditioned on the available
marker data, is

Okij ¼
s2 i ¼ j

s2aðp̂pkij � 2FkijÞ þ s2dðk̂kkij � DkijÞ þ O0
kij i 6¼ j

�
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The parameters used are linkage parameters s2a
and s2d, and segregation parameters ra;rd;rs; s

2.
This parameterization is equivalent to the
more commonly used parameters fs2a ; s2d;s2pa; s2pd;
s2s ; s

2
eg, but results in somewhat simplified calcu-

lations. In the case of data exclusively on sibs-
hips, ra, rd, and rs cannot be separately estimated,
and so we consider the reduced parameter set
ðs2a ; s2d; r; s2Þ. Similar parameterizations have
been used before [e.g., Tang and Siegmund,
2001].
In the GEE method of Chen et al. [2004],

one considers, for pedigree k, the vector Sk ¼
y0k ðy2k � s2Þ0
�

Vecðyky0k � OkÞ0Þ0, where VecðAÞ is a
vector consisting of the upper off-diagonal ele-
ments of a matrix A, and a matrix, Dk, whose
columns consist of the derivatives of Sk with
respect to each of the parameters, as follows:

Here the p̂pk; k̂kk;Fk;Dk are vectors of length
nkðnk � 1Þ=2, and the 0s and 1s in the first
two rows are vectors of length nk. One
then chooses a working covariance matrix,
Wk (that is, an assumed form for the con-
ditional covariance matrix of Sk), and takes
as parameter estimates the solutions of the
equations X

k

D0
kW

�1
k Sk ¼ 0 ð1Þ

Different choices of the working covariance
matrix, Wk, lead to different estimates. In parti-
cular, one may choose the following Gaussian
working covariance matrix [Prentice and Zhao,
1991]:

Gk ¼
Ok 0 0

0 ½2O2
kij� ½2OkilOkim�

0 ½2OkujOkvj� ½OkulOkvm þ OkumOkvl�

0
B@

1
CA

for 1 � i; j � nk, 1 � uov � nk and 1 � lom � nk,
where nk is the number of individuals in pedigree

k, and ½2O2
kij� denotes a matrix consisting of

elements 2O2
kij. This is the conditional covariance

matrix of Sk if yk given the available marker data is
assumed to follow a multivariate normal distribu-
tion. When Gk is used as the working covariance
matrix, Wk, in the estimating equations (1), then
the GEE estimates correspond exactly to the
maximum likelihood estimates (MLEs) for the

variance components model with the usual
normality assumption.
The GEE method, as described so far, provides

estimates of the parameters ðs2a ; s2d;ra;rd;rs; s2Þ. In
the remainder of this section, we describe a
number of possible linkage test statistics, includ-
ing likelihood ratio tests, Wald tests, and score
tests.

LIKELIHOOD RATIO TESTS

In the traditional variance components model
[Amos, 1994; Almasy and Blangero, 1998], the trait
values of pedigree k, conditional on the marker
data, are assumed to follow a multivariate normal
distribution with covariance matrix Ok (defined
above). The test statistic for the likelihood ratio
test is

TLRT ¼
X
k

lnjÔO0

k j þ
X
k

y0kðÔO
0

kÞ
�1yk

�
X
k

lnjÔOkj �
X
k

y0kÔO
�1

k yk ð2Þ

where ÔOk and ÔO
0

k are the MLEs of the covariance
matrix under the full model and under the null
model, respectively.
In many previous investigations [e.g., Almasy

and Blangero, 1998], the putative QTL was
assumed to exhibit no dominance (i.e., s2d ¼ 0).
The null distribution of the likelihood ratio test
statistic is then asymptotically a 50:50 mixture of a
w2ð0Þ (that is, a point mass at 0) and a w2ð1Þ
distribution [Self and Liang, 1987]. If dominance is
considered in forming the test statistic, which we
will denote TLR�D, the null distribution is a 1=2�
p : 1=2 : p mixture of w2ð0Þ, w2ð1Þ and w2ð2Þ [Self
and Liang, 1987]. In Appendix A, we derive the
mixing proportion, p, which was previously not
known [Pratt et al., 2000]. For sibship data, the
null distribution is around 0:4 : 0:5 : 0:1 mixture of
w2ð0Þ, w2ð1Þ and w2ð2Þ, independent of the size of
the sibship.
Use of the likelihood ratio test statistic has

previously been shown to exhibit an inflated
type I error rate in the case that the multivariate
normal model is incorrect [Allison et al., 1999].
This problem may be corrected by estimating the
true null distribution of the statistic either through

Dk ¼
0 0 0 0 0 0
0 0 0 0 0 1

p̂pk � 2Fk k̂kk � Dk 4s2Fk 4s2Dk s2 4raFk þ 4rdDk þ rs

0
@

1
A
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an analytical approach or an empirical approach
such as a Monte Carlo or permutation procedure.
Blangero et al. [2000] proposed a robust LOD

score approach for general pedigrees. This
approach can be derived from the original like-
lihood ratio test:

TLRT-R ¼ nTLRT

where the coefficient n is the ratio of variance of
the MLE estimator versus that of the robust
estimator. Although the original procedure pro-
posed by Blangero et al. [2000] is rather compli-
cated, by taking advantage of the data structure of
multiple pedigrees, and by virtue of the GEE
framework [Chen et al., 2004], the coefficient has a
much simpler expression

where the 11 subscript indicates to take the (1,1)
element of the matrix.
In the simulation study in the next section,

we also consider the following Monte Carlo
procedure for the robust likelihood ratio test.
We fix the genotypes for all founding indivi-
duals in each pedigree and generate random
inheritance vectors for the remaining indivi-
duals in each pedigree, calculate the likelihood
ratio test statistic, and repeat the process
multiple times. The null distribution of the test
statistic is estimated based on these simulated
data; in particular, an appropriate critical
value for the statistic is estimated. This pro-
cedure is denoted either LR-MC or LR-MC-D,
depending on whether dominance is con-
sidered.

WALD TESTS

Due to the complexity of taking appropriate
account of the dominance effect in the Wald and
score tests, all of the remaining linkage tests
assume that the putative QTL acts strictly addi-
tively, and the parameter set is reduced to
ðs2a ; ra; rd; rs; s2Þ for general pedigrees or
ðs2a ; r;s2Þ for sibships. We will discuss the influ-
ence of ignoring the dominance effect in the
simulation section.

The test statistic for the Wald test [Blangero
et al., 2001] is

TWald ¼ ŝs4a
ð
P

k D
0
kĜG

�1

k DkÞ�1
n o

11

: ð3Þ

A robust Wald test [Liang and Zeger, 1986] has
test statistic

Under the null hypothesis of no linkage, both
Wald tests are distributed asymptotically as a
50:50 mixture of w2ð0Þ and w2ð1Þ.

SCORE TESTS

Putter et al. [2002] described the theory of score
test for quantitative trait linkage analysis. Wang
and Huang [2002a] proposed a robust score test

specifically for sibships. We first summarize these
previously described score tests.
Define Da

k ¼ 0 0 p̂p0k � 2F0
k

� �
, S0k ¼ y0k ðy2k � s2Þ0

�
Vecðyky0k � O0

kÞ
0Þ, and

G0
k ¼

O0
k 0 0

0 ½2ðO0
kijÞ

2� ½2O0
kilO

0
kim�

0 ½2O0
kujO

0
kvj� ½O0

kulO
0
kvm þ O0

kumO
0
kvl�

0
BBB@

1
CCCA

for 1 � i; j � nk, 1 � uov � nk and 1 � lom � nk.
The test statistic for the score test [Blangero et al.,
2001] is

Tscore ¼ ð
P

k D
a 0

k ðG0
kÞ

�1S0kÞ
2

P
k D

a 0
k ðG0

kÞ
�1Da

k

: ð5Þ

A more robust version of the score test [Blangero
et al., 2001] is the following:

Tscore-R ¼ ð
P

k D
a 0

k ðG0
kÞ

�1S0kÞ
2

P
k ðDa 0

k ðG0
kÞ

�1S0kÞ
2
: ð6Þ

The test proposed by Sham et al. [2002] and
implemented in the software MERLIN [Abecasis

n ¼ fð
P

k D
0
kĜG

�1

k DkÞ�1g11
fð
P

k D
0
kĜG

�1

k DkÞ�1 P
k ðD0

kĜG
�1

k ŜSkÞðD0
kĜG

�1

k ŜSkÞ0ð
P

k D
0
kĜG

�1

k DkÞ�1g11
;

TWald-R ¼ ŝs4a
ð
P

k D
0
kĜG

�1

k DkÞ�1 P
k ðD0

kĜG
�1

k ŜSkÞðD0
kĜG

�1

k ŜSkÞ0ð
P

k D
0
kĜG

�1

k DkÞ�1
n o

11

ð4Þ
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et al., 2002] has been shown to be equivalent to
another robust score test [Chen et al., 2004],
corresponding to the statistic

TMERLIN ¼
P

k D
a 0

k ðG0
kÞ

�1S0k

� �2

P
k S0

0
k ðG0

kÞ
�1 0 0

0 ŜSp̂pk

� �
ðG0

kÞ
�1S0k

� �

ð7Þ

where the elements in the covariance matrix ŜSp̂pk
have the form Covðpkij; pklmÞ � ðE½pkijpklmjMk��
p̂pkijp̂pklmÞ, where Covðpkij; pklmÞ can be calculated
given only the structure of the kth pedigree, and
E½pkijpklmjMk� can be calculated based on the
posterior distribution conditional on marker in-
formation Mk.
Wang and Huang [2002a] described a robust

score test specific for sibship data; their statistic
can be rewritten in matrix form (see Appendix B)
as

Tscore-S

¼
P

k D
a 0

k ðG0
kÞ

�1S0k

� �2

ðp::: � 2F:::Þ2�
P

k S0
0

k ðG0
kÞ

�1 0 0

0 I

� �
ðG0

kÞ
�1S0k

� �

ð8Þ

where I is an identity matrix of size nkðnk�1Þ
2 �nkðnk�1Þ

2 ,

and ðp::: � 2F:::Þ2 is the average of squared allele-
sharings over all available siblings. The robustness
of this test relies on the independence of allele-
sharing between different sibling pairs, and so it is
generally not applicable for pedigrees of more
complex structure [Wang, 2002]. Wang and Huang
[2002a] described a further approach, in which the
phenotypes are converted to ranks that are then
transformed to follow a normal distribution; a
robust score test [e.g., score-S used by Wang and
Huang, 2002a] can then be applied on the
transformed data.
Note that, under the null hypothesis of no

linkage, all of the score test statistics are distrib-
uted as a 50:50 mixture of w2ð0Þ and w2ð1Þ.

HIGHER MOMENT SCORE TESTS

The above score tests are derived from the
conditional likelihood under the assumption of
normality. The only difference among them is in
the method for estimating the variance of the score
(the denominator in the statistic). Here we
propose an alternative approach: novel score tests
based on a quasi-likelihood that incorporates

information on the higher moments of the
phenotype distribution.
Rather than using the Gaussian working covar-

iance matrix, G0
k , we use the following:

M0
k

¼
O0

k ĝg3s
3I 0

ĝg3s
3I ½2ðO0

kijÞ
2� þ ĝg4s

4I ½2O0
kilO

0
kim�

0 ½2O0
kujO

0
kvj� ½O0

kulO
0
kvm þ O0

kumO
0
kvl�

0
BB@

1
CCA

ð9Þ

where I is an identity matrix of size nk�nk, and ĝg3
and ĝg4 are empirical moment estimates for
skewness and kurtosis parameters of the distribu-
tion of the phenotype, respectively, which are both
0 for the case of a normal distribution. To be more

specific, define ŝs2 ¼ ðy� yÞ2, where overline
represents the sample mean, then

ĝg3 ¼ ðy� yÞ3=ŝs3

ĝg4 ¼ ðy� yÞ4=ŝs4 � 3

Note that the matrix M0
k is the true covariance

matrix in the case that ĝg3 and ĝg4 are the true
skewness and kurtosis and that all higher mo-
ments are 0.
We consider two different test statistics based

on the working covariance matrix, M0
k . The first is

a score statistic analogous to the statistic Tscore in
equation (5):

THM ¼ ð
P

k D
a 0

k ðM̂M
0

kÞ
�1ŜS

0

kÞ
2

P
k D

a 0
k ðM̂M

0

kÞ
�1Da

k

ð10Þ

We can also apply the MERLIN-type robust
estimator [Sham et al., 2002] for the variance of
the estimating function, to make the higher
moment approach even more robust

THM-R ¼
P

k D
a 0

k ðM̂M
0

kÞ
�1ŜS

0

k

� �2

P
k ŜS

0 0

k ðM̂M
0

kÞ
�1 0 0

0 ŜSp̂pk

� �
ðM̂M0

kÞ
�1ŜS

0

k

� � :

ð11Þ

COMPUTER SIMULATIONS

In order to investigate the power and robustness
of the linkage methods described in the previous
section, we conducted a computer simulation
study. While the methods may accommodate
pedigrees of varying size and structure, we
considered the simple case that all pedigrees in a
study were of the same structure: either sibling
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pairs, sibships of size four, sibships of size six, or
the three-generation cousin pedigree with 10
individuals investigated by Sham et al. [2002]
and displayed in Figure 1.
A quantitative phenotype was simulated with a

single major, diallelic QTL, with minor allele
frequency 0.3 and explaining 10% of the total
phenotypic variance, plus 10 additive, unlinked
diallelic polygenes. The alleles at the QTL either
acted additively, or the more-frequent allele was
fully recessive. In the simulations of sibships, the
polygenes accounted for 30% of the total pheno-
typic variance, and there was an additional shared
environment effect accounting for 20% of the
phenotypic variance and following a normal
distribution. In the simulations with the cousin
pedigree, the polygenes accounted for 50% of the
total phenotypic variance and there was no shared
environment effect. The remaining phenotypic
variation was due to an unshared environment
effect that was either normally distributed or
followed a w2ð1Þ distribution.
A single marker was simulated to be either

completely linked to the QTL (recombination
fraction, y ¼ 0) or unlinked (y ¼ 0:5). For most
simulations, the marker was fully informative,
though in one set of simulations, with sibships of
size four, the marker had four equally frequent
alleles.
The number of families were chosen so that,

analytically, the variance components method
would have 80% power to detect the QTL. There

were either 2,999 sibling pairs, 440 sibships of size
four, 168 sibships of size six, or 387 cousin
pedigrees. All simulations were performed with
5,000 replicates, so that the results have standard
error o0:007.
The simulation results are presented in

Figures 2–6. The methods studied include the
likelihood ratio test (LRT, LRT-D, LRT-R), the
likelihood ratio test with 100 Monte Carlo simula-
tions used to determine the appropriate critical
value (LR-MC, LR-MC-D), the Wald test (Wald), a
robustified Wald test (Wald-R), the score test
(score), a robust score test (score-R), the robust
score test for sibships (score-S) [Wang and Huang,
2002a], the method implemented in MERLIN-
REGRESS (MERLIN) [Sham et al., 2002], our
higher moment approach (HM), and a robust
version of the higher moment approach (HM-R).
Figure 2 corresponds to the case of a normal

model with the alleles at the major QTL acting
additively and with a fully informative marker.
All methods are seen to have appropriate type I
error rate, though the robust score test (score-R) is
somewhat conservative in the case of a smaller
number of larger sibships. All methods have
similar power, though the Wald tests and the
robust score test have somewhat lower power,
especially for sibships of size six. Note that the
robust score test of Wang and Huang [2002a] is
appropriate only for sibships, and so was not
investigated for the case of the cousin pedigree.
The LR-MC method also has somewhat reduced

Fig. 1. The first-cousin pedigree considered in the simulation study.
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power, which may be due to the quite limited
number of simulations used to estimate the critical
value. The allowance for dominance in the like-
lihood ratio test (LR-D and LR-MC-D) gave
slightly reduced power in the case of no dom-
inance, but the type I error rate remained correct.
Figure 3 corresponds to the case that the

unshared environment effect followed a w2ð1Þ
distribution. Here the likelihood ratio, Wald, and
score tests are all seen to have inflated type I error
rates (as high as 0.1), and so the power of these
methods was not investigated further. The robust
tests were generally seen to have type I error
under control, though the robust Wald test

appears to have an inflated type I error rate in
the case of sibling pairs, and the robust score test
was again seen to be conservative for the case of a
small number of larger sibships. The power of the
two higher moment approaches are seen to be
higher than the other methods in this non-normal
situation, the other approaches all having approxi-
mately the same power.
Figures 4 and 5 are analogous to Figures 2 and 3,

though with the more-frequent allele at the QTL
being fully recessive. The Wald tests had very
poor performance and so are not shown in these
figures. Of the tests considered here, only the
likelihood ratio test (LRT-D, LR-MC-D) takes
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Fig. 2. Type I error rate and power (in percent) for QTL detection in the case that the residual variation follows a normal distribution

and the QTL exhibits no dominance.
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Fig. 3. Type I error rate and power (in percent) for QTL detection in the case that the residual variation follows a w2 (1) distribution and

the QTL exhibits no dominance.
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account of the non-additivity at the QTL, and it is
seen to have somewhat higher power than other
methods under the normal model (Fig. 4). For the
likelihood ratio test LRT-D and LR-MC-D, the gain
of the power (� 3:5%) by taking account of the
non-additivity is larger than the loss of power
(� 2%) for the case of no dominance shown in
Figure 2. Tang and Siegmund [2001] and Wang
and Huang [2002b] have shown how to modify
the score tests to take account of dominance, but
since their extension of the score test statistic is
asymptotically equivalent to the statistic of the
likelihood ratio test, here we only focused on the
likelihood ratio test by deriving the critical value

of its statistic. In the case of a non-normal model
(Fig. 5), the likelihood ratio and score tests again
have inflated type I error. The robust versions of
the test statistics (including the use of Monte Carlo
simulation to identify an appropriate critical value
for the likelihood ratio test) have appropriate type
I error rates; among these, the higher moment
approaches are again seen to have greatest power.
Figure 6 displays the results for the case that the

marker is not fully informative (having four
equally frequent alleles) and for 440 sibships of
size four. The results are similar to those seen in
Figures 2–5. In particular, our higher moment
approach is seen to be both robust and powerful.
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Fig. 4. Type I error rate and power (in percent) for QTL detection in the case that the residual variation follows a normal distribution

and the QTL is recessive.
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Fig. 5. Type I error rate and power (in percent) for QTL detection in the case that the residual variation follows a w2 (1) distribution and

the QTL is recessive.
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We also considered the use of a nominal sig-
nificance level of 0.001 (data not shown); the
results were qualitatively similar and would lead
to the identical conclusions.
Figure 7 contains the results of further simula-

tions to investigate the effect of the QTL allele

frequency on power in the case of non-normality
with the more-frequent QTL allele being fully
recessive, and for 440 sibships of size four. Here
we include results for the transformation proce-
dure proposed by Wang and Huang [2002a] and
denoted NORM, and the multivariate t method
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Fig. 6. Type I error rate and power (in percent) using 440 sibships of size 4 and a marker having 4 equally-frequent alleles.
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dominant allele when the unshared environmental effect follows a t(5) distribution.
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[Lange et al., 1989] implemented in SOLAR
[Blangero et al., 2001]. Figure 7A corresponds to
the case that the environment effect follows a
w2ð1Þ distribution, analogous to Figure 5, while
Figure 7B corresponds to the case that the
environment effect follows a tð5Þ distribution.
Use of the transformation or the multivariate t
performs extremely well in the case that the QTL
alleles are approximately equally frequent, but
performs poorly in the case that the dominant
allele has frequency o20%. Note Wang and
Huang [2002a] showed this transformation ap-
proach reduces the power of the score test when
the trait values are approximately normally dis-
tributed and the alleles at the major QTL act non-
additively. Special attentions should be paid when
this empirical approach is applied.

DISCUSSION

Chen et al. [2004] described a general frame-
work for quantitative trait linkage analysis, based
on generalized estimating equations (GEE), for
which many current methods are special cases.
The method has considerable flexibility, both in
the choice of working covariance matrix and in the
choice of test statistic. In this report, we have
expanded upon that work: we proposed two
novel higher moment statistics and investigated,
through computer simulations, the power and
robustness of these new methods relative to
previously described approaches, including
the variance components method [Amos, 1994;
Almasy and Blangero, 1998], the robust LOD score
approach [Blangero et al., 2000], the score test
proposed by Wang and Huang [2002a], and the
method implemented in MERLIN-REGRESS
[Sham et al., 2002]. Xu et al. [2000] and Shete
et al. [2003] also used GEE in the context of
QTL mapping, though they focused exclusively
on sibships and particular working covariance
matrices. Our approach is more general.
The computer simulations described here were

conducted using computer software that we
developed, LinkageExplorer (LE). This program
is able to simulate general pedigrees and multi-
point marker data, perform all of the linkage tests
described in this report, and provide analytical
sample size calculations (unpublished data). As
part of our testing of this software, we compared
the results, for simulated data, from our software
with those from GeneHunter [Pratt et al., 2000;
Kruglyak et al., 1996], SOLAR [Almasy and

Blangero, 1998], and MERLIN-REGRESS [Sham
et al., 2002]. The likelihood ratio test implemented
in LinkageExplorer has similar results to Gene-
Hunter and SOLAR in the case that the QTL
alleles acted additively; our implementation of the
method of Sham et al. [2002] gave results identical
to those of MERLIN-REGRESS.
As has been shown previously [Feingold, 2001],

the variance components approach has high
power in the case that the normal model is correct,
but can have greatly inflated type I error rates in
the case of a non-normal phenotype. This non-
robustness applies to likelihood ratio test, Wald
test, and score test. The robust approaches LRT-R,
MERLIN, and score-S are found to have similar
power and robustness, while the robust ap-
proaches Wald-R and score-R have somewhat
lower power unless the number of pedigrees is
large. Further simulations (data not shown)
showed that while the Haseman-Elston regression
[Haseman and Elston, 1972] and its derivatives
have proper type I error rate, they have much
lower power than the robust approaches investi-
gated in this review. Our higher moment ap-
proaches have power similar to the variance
components method in the case that the normal
model is correct and have a properly controlled
type I error rate in the case that the normal model
is not correct. Further, in the case that the normal
model is not correct, the higher moment ap-
proaches are the most powerful methods investi-
gated here.
By using samples selected from normally dis-

tributed population, Sham et al. [2002] showed
their approach is robust to selective sampling, as
long as one can correctly specify the segregation
parameters in the random population. This
robustness also applies to the higher moment
approach HM-R. To see this property, note that
with higher moments g3 and g4 being estimated as
0 in the random population, HM-R is equivalent
to Sham et al.’s approach. The practical perfor-
mance of our higher moment approaches in the
context of selective sampling deserves further
investigation.
It should be noted that Amos et al. [1996]

also proposed a quantitative trait linkage analysis
that made use of higher moments of the pheno-
type distribution, but their approach was based
on a Wald test, and they found it did not perform
well. In addition, Blangero et al. [2000] made
use of higher moments of the phenotype distribu-
tion in order to correct the type I error rate
of the variance components method, but did
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not consider a modification of the test statistic
itself.
The use of a transformation to normality [e.g.,

Wang and Huang, 2002a] and the multivariate-t
approach [Blangero et al., 2001] were investigated
only in the case of a fully recessive QTL (Fig. 7),
and were seen to have especially high power in
the case that the two alleles were equally frequent,
but had low power in the case that the dominant
allele had frequency 10%. In contrast, the higher
moment approaches that we have proposed were
less affected by the frequency of the QTL alleles.
In the simulations described herein, the popula-

tion mean phenotype, m, was assumed to be
known. In practice, m will not be known; further,
one will often need to accommodate environmen-
tal covariates. Estimation of m, and of the effects of
covariates, may be easily accommodated within
our general GEE framework [see Chen et al.,
2004]; in fact, this is an important advantage of the
approach. If our simulations were repeated, with m
estimated based on the data, the results would
likely be the same as those reported, as this
nuisance parameter can be quite precisely esti-
mated on the basis of randomly ascertained
pedigrees. We examined the scenarios in Figure
6 with m being estimated (data not shown),
and the power differences were found to be less
than 1%.
An ideal method for quantitative trait linkage

analysis in human studies would have high power
to detect a QTL, would be robust to departures
from normality (i.e., it would maintain the
appropriate type I error rate yet maintain reason-
able power to detect a QTL), would be applicable
for general pedigrees rather than simply sibling
pairs, could incorporate information from envir-
onmental and other covariates, and would be
appropriate in the presence of selective sampling
(e.g., the selection of discordant sibling pairs).
While we have not yet examined the performance
of our proposed procedures in the context of
selective sampling via computer simulations, the
higher moment score tests, implemented within
the GEE framework of Chen et al. [2004], satisfy
all of the other qualities of an ideal quantitative
trait linkage analysis method.
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APPENDIX A

Self and Liang [1987] showed for the situation
when 2 parameters of interest are on the boundary
of the parameter space, the asymptotic distribu-
tion for the likelihood ratio test statistic is a 1

2 � p :
1
2 : p mixture of w2ð0Þ, w2ð1Þ, and w2ð2Þ, where

p ¼ 1

2p
cos�1 I12ffiffiffiffiffiffiffiffiffiffiffi

I11I22
p ;

and I11; I12; I22 are elements of the information
matrix. In this Appendix, we apply this theory in
order to obtain the null distribution of the
likelihood ratio test of the variance components
analysis when the dominance effect is considered.
Let the index u : v denote the row correspond-

ing to the pair ðu; vÞ with uov. In a variance
components model, suppose a matrix B has ðu :
v; l : mÞ element ðO�1

0 ÞulðO�1
0 Þvm þ ðO�1

0 ÞumðO�1
0 Þvl,

where O0 is the covariance matrix under the null
hypothesis of no linkage. Then the information is

I11 ¼ ðp� 2FÞ0Bðp� 2FÞ
I12 ¼ ðk� DÞ0Bðp� 2FÞ
I22 ¼ ðk� DÞ0Bðk� DÞ

Therefore, for a general pedigree, we have the
following formula to calculate the mixing prob-
abilities

p ¼ 1

2p
cos�1

ðk� DÞ0Bðp� 2FÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 2FÞ0Bðp� 2FÞ�ðk� DÞ0Bðk� DÞ

q :

ð12Þ

For sibship data, since Cov½pij; plm� ¼ Cov½kij;
klm� ¼ 0 when i 6¼ l or j 6¼ m, and diagonal ele-
ments of matrix B are identical, the B matrix can
be canceled out, and thus (12) can be further
simplified as

p ¼ 1

2p
cos�1

P
ioj E½ðpij � 1=2Þðkij � 1=4Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ioj E½ðpij � 1=2Þ2�
P

ioj E½ðkij � 1=4Þ2�
q

¼ 1

2p
cos�1

ffiffiffi
2

3

r
� 0:1:

The critical value corresponding to the 0.05
nominal level is 3:417. When the marker has two
alleles with equal frequency, following a proce-
dure similar to Wang and Huang [2002b], we have
p ¼ 0:083 and critical value becomes 3.32. In a
multipoint linkage analysis, markers tend to be
much more informative. Therefore, a 0:4 : 0:5 : 0:1
mixture of w2ð0Þ, w2ð1Þ, and w2ð2Þ is a reasonable
approximation for the null distribution of like-
lihood ratio test for sibship data. For fully
informative markers and a mixture of sibships of
various sizes, this mixing proportions would be
the same as for a large sample of sibships of the
same size. These mixing proportions have been
obtained for an extension of score test [Wang and
Huang, 2002b].

APPENDIX B

Here we show that the robust test statistic of
Wang and Huang [2002a] may be expressed in
matrix form and fit within the framework of our
general GEE framework. Suppose ok ¼ Okyk and
bk ¼

P
ioj ½p̂pkij � Eðp̂pkijÞ�½okiokj�EðokiokjÞ�. Under

the null hypothesis, the variance estimate for
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P
k bk is ðp̂p . . .� Eðp̂p . . .ÞÞ2�

P
k

P
ioj ðokiokj�

EðokiokjÞÞ2. Then the test statistic proposed by
Wang and Huang [2002a] is ð

P
bkÞ2=Varð

P
bkÞ is

identical to statistic (8) following the next two
equalities:X

k

Da 0

k ðG0
kÞ

�1S0k

¼
X
k

X
ioj

X
l

½p̂pkij � Eðp̂pkijÞ�ðO�1
k ÞilðO�1

k Þjl

½y2kl � Eðy2klÞ�
þ
X
k

X
ioj

X
lom

½p̂pkij � Eðp̂pkijÞ�ðO�1
k ÞilðO�1

k Þjm

þ ðO�1
k ÞimðO�1

k ÞjlÞ½yklykm � EðyklykmÞ�

¼
X
k

X
ioj

½p̂pkij � Eðp̂pkijÞ�½ðO�1
k yky

0
kO

�1
k Þij

� EððO�1
k yky

0
kO

�1
k ÞijÞ�

¼
X
k

X
ioj

½p̂pkij � Eðp̂pkijÞ�½ðoko0
kÞij � Eððoko0

kÞijÞ�

¼
X
k

X
ioj

½p̂pkij � Eðp̂pkijÞ�½okiokj � EðokiokjÞ�;

and similarly

ðp̂p . . .� Eðp̂p . . .ÞÞ2�
X
k

X
ioj

ðokiokj � EðokiokjÞÞ2
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X
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