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Extending Rare-Variant Testing Strategies:
Analysis of Noncoding Sequence and Imputed Genotypes

Matthew Zawistowski,1,2 Shyam Gopalakrishnan,1,2 Jun Ding,1,2 Yun Li,3,4 Sara Grimm,5

and Sebastian Zöllner1,2,6,7,*

Next Generation Sequencing Technology has revolutionized our ability to study the contribution of rare genetic variation to heritable

traits. However, existing single-marker association tests are underpowered for detecting rare risk variants. A more powerful approach

involves pooling methods that combine multiple rare variants from the same gene into a single test statistic. Proposed pooling methods

can be limited because they generally assume high-quality genotypes derived from deep-coverage sequencing, which may not be avail-

able. In this paper, we consider an intuitive and computationally efficient pooling statistic, the cumulative minor-allele test (CMAT).

We assess the performance of the CMAT and other pooling methods on datasets simulated with population genetic models to contain

realistic levels of neutral variation. We consider study designs ranging from exon-only to whole-gene analyses that contain noncoding

variants. For all study designs, the CMATachieves power comparable to that of previously proposedmethods.We then extend the CMAT

to probabilistic genotypes and describe application to low-coverage sequencing and imputation data. We show that augmenting

sequence data with imputed samples is a practical method for increasing the power of rare-variant studies. We also provide a method

of controlling for confounding variables such as population stratification. Finally, we demonstrate that our method makes it possible

to use external imputation templates to analyze rare variants imputed into existing GWAS datasets. As proof of principle, we performed

a CMAT analysis of more than 8 million SNPs that we imputed into the GAIN psoriasis dataset by using haplotypes from the 1000

Genomes Project.
Introduction

The Genome-Wide Association Study (GWAS) is a powerful

tool for analyzing common variation across the human

genome.1 In recent years, GWASs have identified risk

alleles for a wide range of complex human diseases.2

However, most of these alleles provide only small to

moderate increases in risk and contribute little to the over-

all heritability of the disease.3 Because it is unlikely that the

remaining heritability can be completely explained by

undetected common variants with even lower effects,4

heritable factors besides common variation must con-

tribute to complex diseases. The Common Disease-Rare

Variant Hypothesis proposes that some of themissing heri-

tability can be explained by low frequency variants with

larger effect sizes.5,6 Under this model, the contribution of

individual variants to population prevalence is small, but

the combined effect of numerous rare variants can account

for an appreciable fraction of the prevalence. This model is

feasible if risk variants are subject to weak purifying selec-

tion and is supported by the fact that allele frequencies

for protein-altering mutations are more heavily skewed

toward rare variants than those for neutral variants.7

Previously, technological limitations hampered the

ability to affordably assay and test rare variants in large

population-based samples. However, recent advances in

next-generation sequencing technology now provide

the potential to detect all polymorphisms in a genomic
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region.8 Thus, it is possible to test rare variants directly

rather than rely on indirect linkage disequilibrium (LD)-

based methods. Already, candidate-region resequencing

has led to the discovery of numerous rare variants contrib-

uting to phenotypic variation and complex disease in

humans. Resequencing of coding regions and consensus

splice sites in NPC1L1 and PCSK9 has led to the identifica-

tion of multiple rare nonsynonymous mutations collec-

tively associated with variation in sterol absorption and

plasma levels of LDL-C.9,10

Individually testing each variant identified by rese-

quencing is not a powerful strategy because it requires

stringent multiple testing correction and power dimin-

ishes with decreasing allele frequencies.11 To avoid these

issues, several groups have proposed various statistical

methods that instead pool together multiple rare variants

from the same gene and jointly test them for associa-

tion.9,12–14 The recent literature has addressed two related

questions in rare-variant testing: first, the question of

how to effectively combine multiple rare variants in a

gene into a single test and, second, how to weight variants

on the basis of some prior assumption about the likelihood

of functionality. Cohen et al. performed a pooled analysis

of rare variants in NPC1L1 and identified nonsynonymous

variants observed only in cases or only in controls and

used Fisher’s exact test to compare the distributions of

cases and controls carrying these variants.9 Li and Leal pro-

posed the Combined Multivariate and Collapsing method
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that pools variants below a specified minor-allele fre-

quency (maf) and then dichotomizes individuals on the

basis of whether they carry a variant allele at one of the

pooled sites.12 A multivariate statistic is used for jointly

analyzing the set of pooled variants together with more

common variants in the region.

Madsen and Browning introduced two features in the

weighted sum statistic (WSS).13 First, the WSS accumulates

rare-variant counts within the same gene for each indi-

vidual rather than collapsing on them. Second, it intro-

duces a weighting term to emphasize alleles with a low

maf in controls. The result is that each individual receives

a quantitative genetic score that is more informative than

a qualitative score, especially for individuals harboring

more than one rare allele in the region. The scores for all

samples are ordered, and the WSS is computed as the

sum of ranks for cases. One determines significance by

permuting affection status and re-ranking. The ranking

protects against outliers but becomes computationally

expensive for large sample sizes.

Price et al.14 showed that the power gain of weights

based on minor allele frequency is dependent on the rela-

tionship between risk-allele frequency and likely effect

size; this relationship is in turn is dependent on selection

strength. The weights used by Madsen and Browning, for

example, correspond to strong purifying selection. If this

model is correct, the WSS provides a significant power

gain over the previous methods. To generate a test that is

powerful under multiple evolutionary models, Price et al.

proposed a variable maf-threshold approach. For a given

frequency threshold, one computes a likelihood ratio

statistic to compare summed minor-allele counts for vari-

ants below the maf threshold for cases and controls. The

likelihood ratio statistic is maximized across a range of

frequency thresholds so that the statistic is adapted to

the underlying model of selection.

All pooling statistics are subject to variant misspecifica-

tion—that is, potential inclusion of neutral variants or

exclusion of risk variants. Study designs to date have opted

to minimize inclusion of neutral variants by limiting anal-

ysis to nonsynonymous coding variants of candidate

genes.11 The power of this strategy depends on the cumu-

lative effect of rare risk variants that are exonic. Although

coding variants are most likely to be functional, they

account for only a tiny fraction of variation in the genome.

Numerous pieces of evidence indicate that noncoding vari-

ants play an extensive role in disease etiology. Eighty-eight

percent of trait-associated variants identified by GWAS

have occurred outside of known coding regions.2 Large

portions of noncoding regions in the human genome

are subject to negative selection, indicating a functional

purpose to the sequence.15 In addition, noncoding risk

variants have already been verified for numerous dis-

eases.16–18 Resequencing noncoding intronic and regula-

tory regions could enable detection of these more elusive

risk variants but also presents new technical and analytical

challenges to rare-variant analysis. In particular, noncod-
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ing sequence contains substantially more neutral variation

than coding regions.

Existing pooling methods have not been carefully as-

sessed under a paradigm where many risk variants reside

outside exons. Instead, these methods have only been

considered for fairly optimal testing conditions in which

each gene is assumed to have few variants, most of which

are causative.12,13 Moreover, previously published pooling

methods assume high-quality rare-variant genotypes that

are only available through deep-coverage sequencing.

Exon-only studies can attain high-quality genotype calls

because sequencing is limited to relatively small regions.

Generating high-quality sequence data of larger genomic

regions (including whole-genome sequencing) is still

expensive, which limits the number of samples that can

be sequenced at deep coverage for a given study. Instead,

cost-effective strategies such as low-coverage sequenc-

ing19 and genotype imputation20 will be used to produce

sample sizes large enough to powerfully analyze rare vari-

ants. Genotype calls from these methods are less precise

than deep sequencing, generating probabilistic rather

than exact genotypes. Thus, tests applied to whole-gene

sequence data containing both coding and noncoding

regions must accept probabilistic genotypes and be robust

to potentially high inclusion rates for neutral variants.

In this article, we consider a simple pooling statistic, the

cumulative minor-allele test (CMAT) and show that it is

easily extended to accommodate practical analysis consid-

erations such as qualitative covariates and probabilistic

genotypes. The CMAT is closely related to the tests

described in Madsen and Browning13 and in Price et al.14

in that it aggregates allele counts rather than collapsing

on them. Like these methods, the CMAT jointly analyzes

sets of variants that occur in the same gene and that would

otherwise be missed by a standard single-marker analysis.

Because the power of single-marker tests is dependent on

study sample size and risk-allele frequency, the CMAT is

computed on variants with a maf below a preset threshold.

In this paper we especially focus on markers with

a maf <5% and hereafter refer to these as rare variants.

One computes the CMAT statistic by summing rare-

allele counts for sites predicted to be functionally relevant

separately for cases and controls. Our test statistic is analo-

gous to the single marker allelic c2 statistic typically used

to test for allele frequency difference between cases and

controls. Significance is determined by permutation to

account for correlation between pooled variants.

We compare the power of several pooling methods on

case-control sequencing datasets simulated with popula-

tion genetic models designed to mimic the overall level

of diversity seen in European HapMap samples. We create

a disease model of allelic heterogeneity by placingmultiple

rare risk variants in the population. The effect size for each

risk variant is determined by allele frequency to ensure low

power for a single marker test. Because our datasets contain

realistic levels of neutral variation, we can consider the

effect of variant misspecification, both inclusion of neutral
Journal of Human Genetics 87, 604–617, November 12, 2010 605



variants and exclusion of causal variants, in study designs

ranging from exon-only to whole-gene analysis. We show

that, depending on the proportion of noncoding risk vari-

ants, whole-gene designs can be more powerful than exon-

only designs even if they include a large number of neutral

variants.

The form of the CMAT statistic conveniently allows for

categorical covariates and probabilistic genotypes. These

extensions allow rare-variant analysis for datasets contain-

ing imputed genotypes or low-coverage sequence data as

well as common confounding variables such as population

stratification. We demonstrate the importance of these

extensions by analyzing two previously unconsidered

rare-variant study designs. First, we simulate rare-variant

datasets containing spurious associations created by popu-

lation stratification. Ignoring the stratification leads to an

elevated Type I Error rate, and controlling for it with the

covariate form of the CMAT maintains the desired a-level.

Second, we present a study design consisting of both

sequenced and imputed samples. We assume that the

sequenced samples are used for identification of novel

rare variants in a region of interest and that they serve

as templates for imputation of genotypes for these variants

into the remaining (non-sequenced) samples. While care-

fully accounting for the uncertainty involved in imputing

rare variants, we simulate datasets for this study design and

analyze them with the CMAT.We show that using imputa-

tion to increase the sample size of a sequencing dataset can

substantially improve power. Hence we predict that impu-

tation will provide a powerful cost-saving strategy for

future resequencing studies. Moreover, our results suggest

that one could use existing resources such as the 1000

Genomes Project to reanalyze existing GWAS datasets by

imputing rare variants and performing tests such as the

CMAT.

Finally, we illustrate the possibility of reanalyzing GWAS

datasets without resequencing samples. As a proof of prin-

ciple, we imputed more than 8million SNPs into the GAIN

psoriasis GWAS dataset by using CEU haplotypes from the

1000 Genomes Project. This dataset had previously been

augmented with genotypes imputed from HapMap haplo-

types and analyzed with a single-marker association test.21

That analysis identified numerous common risk loci that

were subsequently replicated; these included several vari-

ants in the HLA region on chromosome 6. We reanalyzed

3000 genes with at least two rare variants (maf % 5%) by

using the CMAT. One gene, SKIV2L, located on chromo-

some 6 near the HLA region, maintained a significant

test statistic after we corrected for multiple testing.
Methods

Below, we develop notation for exact and probabilistic

genotype calls, then introduce the CMAT along with three

alternative rare-variant tests. Subsequently, we describe our

algorithm for simulating case-control sequencing data on
606 The American Journal of Human Genetics 87, 604–617, Novemb
the basis of population genetic models. Finally, we provide

details for our application of the CMAT to the GAIN Psori-

asis dataset.

Data Structure

We assume a dataset of NA cases and NU controls. Let

xij˛ 0;1;2gf be the true number of minor alleles at the jth

variant site in the ith case. Let yij be the same value for

the ith control. We consider two possible types of genotype

calls in the data: exact calls, discrete values from 0; 1;2gf
giving the observed minor-allele count, and probabilistic

calls, consisting of a posterior probability mass function

Pð,Þ giving the likelihood for each possible minor-allele

count. Exact genotypes reflect the high-confidence calls

possible in deep-coverage sequencing data, whereas the

probabilistic calls represent the uncertainty in low-cover-

age sequencing and imputation. In the dataset, we define

the observed value for the jth variant site in the ith case to be

Xij ¼
8<
:

xij; for exact genotype callsP2
n¼0

nP
�
xij ¼ n

�
; for probabilistic genotype calls:

That is, we assume the true minor-allele count is

observed if an exact call is made; otherwise, we observe

the minor-allele count that is expected on the basis of

the posterior probability distribution. Similarly, we define

Yij for the jth variant site in the ith control and replace xij
with yij.

Cumulative Minor-Allele Test

Weassume the genetic data are partitioned into a collection

of discrete testing units, genomic regions to be individually

tested for association with disease susceptibility. The most

natural choice for a testing unit is a single gene, but highly

conserved nongenic regions or pathways containing mul-

tiple genes are also suitable. Assume F > 1 variants in

the testing unit, each with a weighting factor wjR0,

ðj ¼ 1;.FÞ. It is possible to filter a variant out of the anal-

ysis by setting the respective weight to zero or emphasize

its presence by assigning a large weight. For this paper, wj

is a simple indicator function that identifies variants

included in the analysis (it is described in more detail

later). Note that a testing unit containing only a single

variant with positive weight is equivalent to a single-

marker test on that variant.

We first describe application of the CMAT to a dataset

containing exact genotype calls for all NA cases and all

NU controls. Let mA ¼ PNA

i¼1

PF
j¼1

wjXij and mU ¼ PNU

i¼1

PF
j¼1

wjYij be

the weighted minor-allele counts across all sites in the

testing unit for cases and controls, respectively. Then

MA ¼ PNA

i¼1

PF
j¼1

wjð2� XijÞ and MU ¼ PNU

i¼1

PF
j¼1

wjð2� YijÞ are

therefore the weighted major-allele counts across all sites

for cases and controls, respectively. We define the CMAT

statistic SCMAT to be
er 12, 2010



SCMAT ¼ NA þNU

2NANU

P
j wj

3
ðmAMU �mUMAÞ2

ðmA þmUÞðMA þMUÞ (1)

The statistic SCMAT is derived from the standard Pearson

c2 statistic for testing independence between allele

frequency and disease status in a single-marker association

test. However, SCMAT does not have an asymptotic c2 distri-

bution because independent counts are required for the

asymptotic properties to be valid. Because we sum over

multiple sites in a testing unit, and because some of these

sites might be in LD with each other, the counts are not

independent. Instead, we determine the statistical sig-

nificance of SCMAT by permuting affection status while

holding the genetic data fixed. For each permuted realiza-

tion, SCMAT is recomputed, and the p value is defined as

the proportion of permutations with a test statistic greater

than or equal to the observed statistic.

In the presence of qualitative covariate data on potential

confounders, the weighted allele counts are computed

separately within each covariate level, and the form of

SCMAT is changed to a Cochran-Mantel-Haenszel-like

statistic. Assume a qualitative covariate c ¼ 1;.;C. Using

similar notation, we define the observed value for the jth

variant site in the ith case of the cth covariate class to be

Xijc ¼
8<
:

xijc; for exact genotype callsP2
n¼0

nP
�
xijc ¼ n

�
; for probabilistic genotype calls:

Similarly, we define Yijc for the jth variant site in the ith

control of the cth covariate class and replace xijc with yijc.
Assume NA;c cases and NU;c controls within the cth covari-

ate class and Nc ¼ NA;c þNU;c. Weighted allele counts are

then computed within each covariate class separately.

Let mA;c ¼
PNA ;c

i¼1

PF
j¼1

wjXijc and mU;c ¼
PNU ;c

i¼1

PF
j¼1

wjYijc be the

weighted minor-allele counts across all sites in the testing

unit for cases and controls, respectively, in the cth covariate

class. Then MA;c ¼
PNA;c

i¼1

PF
j¼1

wjð2� XijcÞ and MU;c¼
PNU ;c

i¼1

PF
j¼1

wj

ð2� YijcÞ are the weighted major-allele counts across sites

for cases and controls, respectively, of the cth covariate

class. We define the covCMAT statistic ScovCMAT to be

ScovCMAT ¼

�P
c mA;c � NA;cðmA;c þmU;cÞ

Nc

�2
P

c

NA;cNU;cðmA;c þmU;cÞðMA;c þMU;cÞ
2N3

c

P
j wj

: (2)

Statistical significance is determined by permuting case-

control status while keeping the genetic and covariate data

fixed. Equation (2) resembles the Cochran-Mantel-Haens-

zel c2 statistic and simplifies to Equation (1) when C ¼ 1.

We now consider a dataset containing NA
seq cases and NU

seq

controls with exact genotype calls and NA �NA
seq cases and

NU �NU
seq controls with probabilistic calls. Computation of

SCMAT (Equation 1) remains the same except expected
The American
minor allele counts replace exact counts for imputed

samples. One again determines significance by permuting

affection status. However, to account for the difference in

quality between the two data types, one must shuffle affec-

tion status separately for exact and probabilistic calls. That

is, for all permutations, the number of cases and controls

with exact genotype counts must remain constant. Failure

to modify the permutation method in this manner can

affect type I error, especially for unbalanced designs

(NA
seqsNU

seq).

Alternative Rare-Variant Methods

We compared the performance of the CMAT to three alter-

native rare-variant methods. First, we implemented Li and

Leal’s collapsing method,12 which compares number of

rare-variant carriers in cases to the number in controls. Let

the indicator variable Xi denote whether the ith case carries

at least one rare variant at a site of interest, as follows

Xi ¼
�
1; wjXij > 0 for any 1%j%F
0 otherwise:

Yi is analogously defined to indicate controls carrying at

least one rare variant. Then X ¼ PNA

i¼1

Xi and Y ¼ PNU

i¼1

Yi are,

respectively, the number of cases and controls carrying at

least one rare variant. The Pearson c2 statistic,

c2
COLL ¼

ðNA þNUÞ3 ðXNU � YNAÞ2
NANUðXþ YÞðNA þNU � X� YÞ

tests the null hypothesis that cases and controls are equally

likely to be carriers of a rare variant. c2
COLL has an asymp-

totic c2 distribution with one degree of freedom.

Next, we considered a private-allele test similar to the

method used by Cohen et al,9 to compare the number of

rare variants unique to either cases or controls. For this

test we required an equal number of cases and controls

(NA ¼ NU ). A site is defined to be private if it is polymor-

phic in either cases or controls but monomorphic in the

other group. The minor allele at a private site is called

a private allele. For example, the minor allele at the jth

site is private to cases if
PNA

i¼1

Xij > 0 but
PNU

i¼1

Yij ¼ 0. Under

the null hypothesis, rare variants are not associated with

disease risk, and private alleles are therefore equally likely

to occur in cases and controls. This is tested formally

with a c2 test in the following manner: Let npriv be the total

number of private alleles in the dataset and nA and nU the

number of private alleles unique to cases and controls,

respectively (npriv ¼ nA þ nU ). Define

c2
PRIV ¼

�
nA � npriv

2

�2

þ
�
nU � npriv

2

�2

npriv

2

Under the null distribution of no association, c2
PRIV is

asymptotically c2 distributed with one degree of freedom.
Journal of Human Genetics 87, 604–617, November 12, 2010 607



Figure 1. Relationship between Minor-Allele Frequency and
Relative Risk in Our Disease Model
The relative risk is chosen such that a single marker test of 1000
cases and 1000 controls performed at a ¼ 10�5 on a risk variant
with the specified maf has a maximum power of 10%. Relative
risks for variants with a maf < 10�3 were truncated to 6.
As with the CMAT and collapsing test, the private-allele

test considers only variants with positive weighting

terms.

Finally, we implemented the WSS as described by Mad-

sen and Browning.13 For the ith individual in the dataset,

one computes a genetic score defined as gi ¼ PF
j¼1

wjXij.

The genetic scores for all samples in the dataset (cases

and controls combined) are sorted, and the sum of ranks

of genetic scores for cases, x ¼ P
i˛cases

rankðgiÞ, is computed.

Statistical significance of x is determined by permutation.

Madsen and Browning recommend increasing the weight

of rare variants by defining weighting terms according to

maf in controls. We do not directly consider the question

of how to weight rare variants in this paper. Therefore,

we applied a simple uniform weighting scheme to all tests.

However, for comparative purposes, we include applica-

tion of the WSS and CMAT in which the weights defined

in Madsen and Browning are used (Figure S2). The three

alternative methods have been formally defined only for

exact genotypes; thus, we limit power comparisons to data-

sets containing only exact genotype calls.

Simulations

Deep-Sequence Datasets

We simulated deep-sequence datasets containing exact

genotype calls for an equal number N of cases and con-

trols. We first created a population of ten thousand

100 kb haplotypes by using the coalescent simulator cosi

with parameters chosen to reflect characteristics seen in

the European HapMap samples.22 Let ntot be the total

number of polymorphic sites among the ten thousand

population haplotypes. Denote the allele at the jth site on

the ith haplotype as Aij, where Aij ¼ 0 if the major allele

is present and Aij ¼ 1 if the minor allele is present

ði ¼ 1;.;10;000 and j ¼ 1;.;ntotÞ. We fixed a maximum

allele frequency pmax for risk alleles and randomly chose

k sites with maf < pmax to be causative. Let cj ¼ 1 if the jth

variant site is selected to be causative and cj ¼ 0 if it is

neutral.

For each risk variant, we assigned an effect size that

ensured that a single-marker association test would have

a low probability of being statistically significant. Specifi-

cally, we computed the relative risk gp necessary for a risk

variant with maf ¼ p to have 10% power in a 1 degree of

freedom c2 test of 1000 cases and 1000 controls performed

at a ¼ 10�5 (Figure 1). As a result, rarer variants are as-

signed larger relative risks, although we capped relative

risks for variants with maf < 10�3 at six. Assuming the

maf for the jth variant is p, we set the relative risk at that

site to be RRj ¼ g
cj
p .

Assuming a multiplicative effect between causative vari-

ants, the penetrance fi for haplotype i is

fi ¼
ffiffiffi
b

p
3

Y
j jAij¼1

RRj;
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where b is the risk for an individual with wild-type

(non-risk) alleles at all causative sites and is set to ensure

that the population prevalence remains fixed at a desired

level.

We then sampled diploid cases and controls by using

Bayes’ Theorem to randomly drawing two haplotypes

conditional on disease status. For example, if we assume

unconditionally that each of the ten thousand popula-

tion haplotypes is equally likely to be selected, the proba-

bility that the ith and jth haplotypes will be chosen for a

case is

Pr
�
hi;hj j case

� ¼ Pr
�
case j hi;hj

�
3PrðhiÞ3Pr

�
hj

�
PrðcaseÞ

¼ fi 3fj

10;0002 3PrðcaseÞ:

We treat the unconditional probability of being a case

(population prevalence) as a fixed parameter in our simula-

tions.

After the construction of a dataset, we mimicked a bioin-

formatic annotation process to determine the set of vari-

ants predicted to be functional and therefore included in

the analysis. Each observed variant was randomly labeled

as either ‘‘included’’ or ‘‘excluded’’ from the analysis condi-

tional on whether it was causative or neutral. Define pc to

be the probability that a causative variant is predicted to

be functional and therefore included in the analysis. Like-

wise, pn is the same probability for neutral variants. Then,

if we let Ij be an indicator for inclusion in the analysis, the

jth variant is included with probability

Pr
�
Ij ¼ 1

� ¼ �
pc; cj ¼ 1
pn; cj ¼ 0:

We treated the values pc and pn as parameters to simulate

study designs with alternative inclusion thresholds. Using
er 12, 2010



the functional annotations, we defined the weighting

terms used in our simulations

wj ¼
�
Ij; mafj%b

0 mafj > b:
(3)

This weighting scheme therefore acted as a filter to retain

variants that had a maf %b and were predicted to be func-

tional in the annotation step.

Imputation Datasets

Next, we created datasets containing exact genotypes for

Nseq cases and controls that were assumed to have been

sequenced at deep coverage. We also created datasets con-

taining probabilistic genotypes for an additional N �Nseq

imputed cases and controls. Thus, in contrast to our

deep-sequence simulations, where we assumed deep-

sequence data for all samples, here we assumed deep-

sequence data for only a fraction of the total sample size.

It was computationally infeasible to phase and impute

genotypes for each simulated dataset; therefore, we drew

haplotypes forN cases and controls by using the previously

described method and replaced the true minor-allele

counts with expected minor-allele counts for the imputed

portion of the sample. Expected minor-allele counts were

drawn from empirical sampling distributions created via

independent imputation runs (see Appendix A). Individual

draws were made conditional on the true minor-allele

count at the locus to be imputed and the number of times

the minor allele at that site was observed in the sequenced

samples. We created separate empirical distributions for

Nseq ¼ 100, 200, and 400. Only sites polymorphic among

the sequenced samples were eligible for inclusion in the

analysis. Singletons in the sequenced samples cannot be

accurately phased and were therefore not imputed. Hence,

the minor allele must be observed at least twice in the

sequenced samples to be imputed.

Stratified Datasets

To demonstrate the covariate form of the CMAT statistic,

we simulated datasets containing population stratification.

To do so, we used cosi to simulate sets of haplotypes that

reflect variation observed in European and African popula-

tions.22 We drew datasets containing N cases and N

controls under the null hypothesis of no risk variants

(k ¼ 0); however, we preferentially chose haplotypes

from the African population to be cases. For each sample

in a dataset, we first chose a population of origin for the

sample. We let p be the probability that a control is derived

from the African population and pþ d, ðd > 0Þ, to be the

probability that a case is derived from the African pop-

ulation. Controls and cases are therefore drawn from

the European population with probability 1� p and

1� p� d, respectively. Once population of origin was

determined, we randomly selected two haplotypes from

the appropriate population to create a diploid sample.

We analyzed each simulated dataset with both the CMAT

and the covCMAT and controlled for population of origin

in the latter. When applying the covCMAT, we assumed
The American
that the true population of origin was known for each

sample.

Simulation Settings

We fixed the population disease prevalence at 1%

throughout the simulations. Under our disease model,

increasing the number of causative sites k while holding

prevalence constant increases the proportion of disease

prevalence explained by variation at the locus. We focused

our analysis on risk alleles with a maf %5% by setting

parameters pmax and b to 0.05. However we repeated our

analysis while restricting risk variants to a maf %1% and

report those results as well. Because causative sites were

chosen at random and the allele frequency spectrum was

heavily shifted toward extremely low frequencies, approx-

imately 95% of risk alleles in our simulations have

frequency < 1% even for simulations with pmax ¼ 0:05.

We estimated power for each test at different parameter

settings as the proportion of simulated datasets with statis-

tically significant p values (based on a minimum of at least

1000 simulated datasets). We report power at a critical level

of a ¼ 0:01, for which we assume that the sequenced

region contains several genes to be tested.

GWAS Application

We imputed 8.2 million autosomal SNPs into the GAIN

Psoriasis dataset by using 112 CEU haplotypes from the

August 2009 release of the 1000 Genomes Project as a refer-

ence. We filtered the imputed SNPs by removing all vari-

ants with very low estimated imputation accuracy (bR2
<

0.3). We annotated SNPs discovered in the 1000 Genomes

Project Pilot by using a custom Perl script. The tool reports

for each SNP the gene locus (if available) and the predicted

protein effect, based on a set of curated transcripts from

Refseq and GenBank. We included in our analysis SNPs

annotated as missense, nonsense, or splice-site mutation

or an untranslated region (UTR). We filtered out variants

with a maf > 5% and pooled the remaining variants

together by genes. That is, we used the following weighting

strategy:

wj ¼
8<
:

1; mafj%0:05 and UTR; missense;
nonsense; or splice-site

0; otherwise:

Results

Deep-Coverage Sequencing Datasets

To evaluate the performance of the CMAT, we used coa-

lescent simulations to generate realistic case-control

sequence data for a 100 kb region of interest, representing

the exons, introns, and surrounding regulatory regions for

a large gene. A dataset of N ¼ 1000 cases and controls

drawn from a populationwith k ¼ 15 rare (maf%5%) caus-

ative sites contained, on average, S ¼ 1565 segregating

variable sites with a mean pairwise sequence difference
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Figure 2. Power to Analyze Deep-
Sequencing Datasets for a Range of Inclu-
sion Probabilities
Each dataset contains exact genotypes for
N ¼ 1000 cases and controls based on
k ¼ 15 causative variants in the popula-
tion. Along the vertical axis, we vary the
probability of (incorrectly) including a
neutral variant (pn) in the analysis, and
along the horizontal axis we vary the prob-
ability of (correctly) including a causative
variant (pc). The height of the bars in
each cell indicates the power for the four
tests at a ¼ 0:01.
p ¼ 0:00114. Of the observed sites, 1272 had a maf %5%,

and we observed 12:4 of the 15 risk alleles. A larger dataset

with N ¼ 2000 cases and controls contained an average of

1556 polymorphic sites with frequency < 5% and 14:1 of

the 15 risk alleles. Larger sample sizes therefore increase

both the number of risk alleles observed in the sample

and the number of neutral variants.

We mimicked functional filtering by analyzing only

a subset of the variants observed in a dataset. If they

were observed, causative variants were ‘‘predicted’’ to be

functional and therefore were included in the analysis

with probability pc ; neutral variants were included with

probability pn. Because few of the observed variants are

actually causative, pn is approximately the overall propor-

tion of rare variants included in the analysis, and pc can

be thought of as the success rate for including causal

variants.

We determined practical values for pc and pn by investi-

gating the distribution of functional annotations for genic

SNPs in the dbSNP database.23 Of genic SNPs with at least

one annotation, approximately 1.6% were denoted as

nonsynonymous coding or splicing variants (nonsense,

missense, frameshift, or altered splice-site mutations), 1%

were synonymous coding variants, 2.7% occurred in the

UTR, and 5.3% occurred outside the transcribed region

of the gene. Intronic SNPs accounted for the remaining

class of variants. Thus, an overall inclusion rate ðpnÞ of
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1%–2% roughly corresponds to ana-

lyzing only nonsynonymous vari-

ants, whereas extending the analysis

to include variants in the UTR and

outside the transcribed region has an

inclusion rate of approximately 10%.

We computed power for the rare-

variantmethods on amisspecification

grid with values of pn between 0 and

0.1 and pc between 0.2 and 1.0. First

we computed the type I error for

each test by setting k ¼ 0. The CMAT,

collapsing method, and WSS each

maintained the desired false-positive

rate for all values of pn. Type I error

for the private allele test was initially
conservative for smaller values of pn, and then increased

with the number of variants included until it became

anti-conservative for larger values of pn (Figure S1).

Increased false positives for the private-allele test were

probably due to the inclusion of variants in high pairwise

LD in the calculation, in violation of the independence

assumption required for the asymptotic distribution.

In the presence of causative variants (k > 0), the power

to identify a gene depended on the inclusion parameters

pc and pn (Figure 2). We discuss results generated with

a sample size of N ¼ 1000 and k ¼ 15 causative variants;

results for k ¼ 7 and k ¼ 30 were similar (not shown).

When all variants were correctly specified (pc ¼ 1; pn ¼ 0),

the CMAT, WSS, and collapsing test attained power near

100%, and the private test attained a power of 72%,

indicating that each test is quite powerful under perfect

filtering. However, power for each test dropped when we

allowed for misspecification. Increasing the probability of

including neutral variants (pn[) reduced power. Decreasing

the probability of including causative variants (pcY) also

lowered power.

A comparison of power between tests illustrates that the

CMATandWSS had nearly identical performance andwere

the most powerful tests at all levels of misspecification

considered. The private-allele test had power <20% for

most parameter settings. Power for the CMAT, WSS, and

collapsing test was nearly identical when only a small



Figure 3. Application of the covCMAT to Control for Population
Stratification
Cases were preferentially sampled from a population containing
a larger number of rare variants. Failure to account for population
stratification leads to inflated false-positive rates for the CMAT.
When applied with the covariate correction, the covCMAT main-
tained the appropriate type I error.
number of neutral variants were included in the test

statistic (pn%0:02). Here, the absolute power for the three

tests was heavily dependent on the inclusion rate for

causal variants; it increased from 30% up to 95% as the

number of included causal variants increased.

The CMAT and WSS showed a clear power gain over the

collapsing method for larger neutral variant-inclusion

probabilities. In fact, the power gain was greatest when

filtering accuracy was poorest. The CMAT had a power

of 24%, as opposed to 11% for the collapsing test when

pn ¼ 0.1 and pc ¼ 0.2. This trend continued for values of

pn > 0:1 (data not shown). This difference is caused by

the way the different tests account for individuals with

more than one rare variant of interest. For larger values

of pn, individual samples are increasingly likely to contain

multiple rare variants. By directly testing the number of

rare variants rather than the number of rare-variant

carriers, the CMAT and WSS have additional power over

the collapsing test.

Appropriately weighting variants in the test statistic

might further improve power. However, it is presently

unclear which weighting strategy is the most powerful,

and it is likely that it will differ from case to case. Although

we do not directly address the issue of most powerful

weighting scheme in this paper, we computed power for

both the CMAT and WSS by using the weighting scheme

described by Madsen and Browning.13 Under this scheme,

allele counts for the jth variant are weighted by the inverse

of the standard deviation of allele count in controls.

To facilitate comparison, we included only variants with

a maf below our predetermined threshold (b ¼ 0:05) in

the analysis. The maf-based weights correspond more

closely to our disease model (Figure 1) than do the simple

uniform weights and therefore provided a more powerful

analysis for both methods except when misspecification

rates were highest (Figure S2). Conditional on weighting

scheme, the CMAT and WSS had similar power across the

grid.

To assess the influence of variants with a maf of 1%–5%

on the presented results, we repeated all simulations while

restricting attention to variants with a maf %1% (ie

b ¼ 1%; pmax ¼ 1%). The misspecification grid for these

settings (Figure S3) showed that overall power for each

test was slightly lower than in the presented results. The

noticeable change was that for the largest values of pn
and pc, the WSS showed a power advantage, whereas the

CMAT and the collapsing test had similar power.

For the remainder, simulation results are based on inclu-

sion parameters of pn ¼ 0.1 and pc ¼ 0.8 so that they reflect

a whole-gene analysis strategy that includes nonsynony-

mous coding and splice-site mutations plus variants in the

UTR and potential regulatory regions flanking the gene.

Covariate Correction

Next, we created datasets in which samples were drawn

from two distinct populations meant to resemble Euro-

pean and African haplotypes. We simulated the datasets
The American
under the null hypothesis of no association (k ¼ 0) but

preferentially drew cases from the African population.

Because the African haplotypes contain more rare varia-

tion than do the European haplotypes, the datasets con-

tain a spurious association between disease status and an

excess of rare variants. Datasets contained N ¼ 1000 cases

and controls drawn from the African population with

probability pþ d; d > 0 and p, respectively. We analyzed

each dataset at a ¼ 0:01 with the CMAT and the covCMAT

and controlled for population of origin in the latter.

We present results for p ¼ 0:5 and 0%d%0:25 (Figure 3).

Ignoring the population stratification resulted in an

elevated CMAT type I error, which increased sharply for

d > 0:025. The magnitude of this increase is affected by

the inclusion probability for the summary statistics. For

strategies that attempt to capture all variants near a gene

(shown here), the false-positive rate is substantially larger

than for strategies focusing on exonic variation. Control-

ling for ancestry by including it as a covariate into the

covCMAT maintained the desired type I error across all

values of d we considered.

Imputation Datasets

The CMAT is easily applied to imputation datasets contain-

ing probabilistic genotype calls. To consider the potential

of a study design combining sequenced and imputed sam-

ples, we simulated exact genotype calls for the sequenced

samples and probabilistic genotypes for the remaining

samples. We considered a design with an equal number

of cases and controls sequenced in a 100 kb region of

interest and genotyped for tagSNPs in a 1Mb encompass-

ing region. Imputed samples were assumed to be geno-

typed for the same set of tagSNPs. In this design, variants

observed at least twice in the sequenced samples were

imputed in the nonsequenced samples.
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Figure 4. Comparison of CMAT Power for Deep Sequencing and
Imputation Study Designs
From left to right, the bars show power at a ¼ 0:01 for a deep-
sequencing dataset with N ¼ 200, an imputation dataset with
Nseq ¼ 200 and N ¼ 2000, and a deep-sequencing dataset with
N ¼ 2000. For each, we used the whole-gene inclusion threshold
(pn ¼ 0:1; pc ¼ :8).

Figure 5. CMAT Power for Imputation Datasets
Datasets contain exact genotypes for Nseq sequenced cases and
controls and probabilistic genotypes based on imputation for
the remaining samples. The top line shows CMAT power when
all samples are sequenced ðNseq ¼ NÞ and serves as an upper bound
for power at a fixed total sample size N. We report power
at a ¼ 0:01 by using the whole-gene inclusion threshold
(pn ¼ 0:1; pc ¼ 0:8).
We found that the addition of imputed samples to a fixed

number of sequenced samples can provide a considerable

power gain over analyzing only the sequenced samples

(Figure 4). A whole-gene CMAT analysis of datasets drawn

from a population containing k ¼ 15 causative variants

and constrained to N ¼ Nseq ¼ 200 sequenced cases and

controls has a power of 14%. Augmenting these sequenced

samples with an additional 1800 imputed cases and con-

trols (total sample size N ¼ 2000) increases power to 48%.

This compares favorably with the optimalN ¼ 2000 design

that sequences all samples and has a power of 66%. Thus,

the additional information from imputed samples recov-

ered much but not all of the power of a fully sequenced

dataset.

We extended our analysis to a wide range of sample sizes

with N from 200 to 5000 and considered the effect of

sequencing Nseq ¼ 100, 200, or 400 samples for each N.

The CMAT had a well controlled type I error when it was

applied to datasets simulated with k ¼ 0 causative variants

(data not shown). We present results for an analysis

involving whole-genome inclusion parameters and k ¼ 15

causative variants in the population (Figure 5). Power

curves for inclusion thresholds that reflect an exon-only

analysis (pn ¼ 0:02; pc ¼ 0:4) were slightly lower across all

considered values of N (data not shown). For comparison,

we also computed CMAT power for a dataset containing

exact genotypes for all samples (i.e., Nseq ¼ N). We found

that for a given total sample size N, CMAT power increased

with the number of sequenced samples. AtN ¼ 3000, data-

sets containing 100, 200, and 400 sequenced samples had

powers of 48%, 56%, and 65%, respectively. Attaining

similar power in a set of fully sequenced samples requires

N ¼ Nseq ¼ 1000, 1500, and 2000 samples, respectively.

The dependence of power on the number of sequenced

individuals is driven by three factors. First, replacing an

exact genotype with a probabilistic genotype results in

a loss of information. Thus, for a fixed sample size, datasets
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containing fewer sequenced samples suffer a larger infor-

mation loss. Second, increasing the number of sequenced

samples increases the chance that a risk allele is observed

at least twice and can therefore be imputed. Of k ¼ 15

risk alleles in the simulations with maf <5%, an average

of 3.2 were observed at least twice among 100 sequenced

cases and controls. This number increased to 5.0 and 7.5

for datasets with 200 and 400 sequenced cases and

controls, respectively. Third, imputation accuracy for an

individual allele improves as that allele is observed more

often in the sequenced samples. Sequencing a larger

number of samples increases the number of times a risk

allele is observed, and thus improves imputation accuracy

for that allele.

We repeated the imputation simulations by using 1%

maf parameter settings (Figure S4). We observed only a

small reduction in power compared to the analysis with

maf %5%. Only datasets with 100 sequenced cases and

100 sequenced controls showed a notable reduction in

power. For Nseq ¼ 100, 200, and 400 sequenced cases and

controls, a study with total sample size of N ¼ 3000 had

powers of 38%;52%, and 63%, respectively. Hence, pro-

vided there is a sufficiently large set of sequenced

templates, imputation of rare variants is a useful strategy,

even if variants with a maf < 1% are of particular interest.
Application to GAIN Psoriasis Data

Our simulation study assumed that imputation templates

were sequenced individuals from the study sample. It is

feasible to instead use haplotypes from a public dataset

as the imputation templates. This has the advantage

that it allows rare-variant analysis in any existing GWAS

dataset without requiring additional sequencing by the

investigator.
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Table 1. Summary of the Top Result from CMAT Analysis of the GAIN Psoriasis Dataset, into which 8.2 Million SNPs were imputed on the
basis of 112 CEU Haplotypes from the 1000 Genomes Project as a Reference

SKIV2L Variant maf Function Imputation bR2
Single-Marker
p Value Correlation between Imputed Genotypes

rs17201466 0.0496 UTR 0.98 0.0018 1.000

rs36038685 0.0109 R324W 0.99 0.1210 �0.016 1.000

rs3911893 0.0427 D887N 0.94 0.0029 �0.055 �0.006 1.000

rs106287 0.0359 V917M 0.91 0.0888 �0.059 �0.027 �0.034 1.000

SKIV2L was statistically significant after Bonferroni correction (CMAT p < 10�6). SKIV2L is located on 6p21.33, 700 kb away from HLA-C, a known psoriasis suscep-
tibility locus. The table lists the maf, functional annotation, imputation accuracy bR2

, and single-marker p value of individual variants included in the pooled
statistic. The last columns contain the pairwise correlations between imputed minor-allele counts.
As proof of principle for this approach, we applied the

CMAT to the GAIN Psoriasis (MIM 177900) dataset consist-

ing of 1,359 psoriasis cases and 1,400 unaffected controls

of white European ancestry. We imputed 8.2 million auto-

somal SNPs into the dataset by using 112 CEU haplotypes

from the August 2009 release of the 1000 Genomes Project

as our reference panel. Previously, others had imputed this

dataset for 2.5 million SNPs by using the CEU HapMap

samples and analyzed it with a standard single-marker

test for association.21 The strongest signal for association

(rs12191877, single marker p ¼ 4 3 10�53) was located

13 kb upstream of the HLA-C (MIM 142840) gene, a previ-

ously known psoriasis locus on chromosome 6. Ten of the

top 18 loci identified in the initial analysis were subse-

quently replicated in a larger, independent sample.

To apply the CMAT, we assigned the imputed SNPs to

genes and retrieved functional annotations for genic

variants (see Methods). We retained only SNPs with

maf < 0:05 and annotated these as nonsynonymous,

splice-site, or UTR. In total, 2889 genes containing two

or more SNPs after filtering were analyzed with the

CMAT. Of the genes tested, 55% contained two SNPs,

23% contained three SNPs, 11% contained four SNPs, and

the remaining 11% contained five or more SNPs. None of

the ten replicated SNPs from the original analysis remained

after filtering, and only three genes (IL12B [MIM 161561],

TSC1 [MIM 605284] and TNFAIP3 [MIM 191163]) near

a replicated signal were included in the CMAT analysis.

After Bonferroni correction for the number of genes

tested, one gene, SKIV2L, achieved statistical significance

ðp< 10�6; p< 3310�3 after Bonferroni correction) (MIM

600478). SKIV2L is located on 6p21.33, 700 kb away

from HLA-C, the previously implicated psoriasis-suscepti-

bility locus. The SKIV2L testing unit contained four

imputed variants with a maf < 0.05 (Table 1). Although

each variant trended toward significance in the single-

marker test, no individual p value is sufficient to explain

the level of significance observed in the CMAT. Genotypes

for these variants were uncorrelated, indicating they are

probably on different haplotype backgrounds and there-

fore independently contribute to the CMAT statistic. Thus,

the significance of the SKIV2L CMAT statistic is driven by

the cumulative effect of the four variants. Because imputa-
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tion accuracy, indicated by bR2
, is high for each variant, it is

unlikely that the observed signal is the result of low impu-

tation quality.

Analysis of common variation in the HLA region

indicated the potential for additional functional variants

in the same or different genes after conditioning on

rs12191877. Our result for SKIV2L might indicate such

an additional psoriasis locus in this region and makes

SKIV2L an interesting candidate for further investigation.
Discussion

We described the CMAT, a simple method for jointly

testing multiple rare variants in case-control sequence

data; the CMAT can be easily extended to deal with typi-

cal challenges of modern genomic studies. Notably, our

statistic accepts expected minor-allele counts from pro-

babilistic genotypes, making it applicable to both low-

coverage sequencing and imputed data. The statistic can

incorporate qualitative covariates and thus allow correc-

tion for confounders such as population stratification.

Moreover, the CMAT is both computationally fast and

straightforward to implement.

We assessed the CMAT by applying it to simulated case-

control sequencing datasets specifically designed to con-

tain realistic levels of neutral variation. We also considered

three alternative testing strategies, a private-allele test

similar to the one used by Cohen et al.,9 the collapsing

test described by Li and Leal,12 and the weighted sum

statistic (WSS) of Madsen and Browning.13 We considered

levels of variant misspecification that are representative of

exon-only sequencing to entire genic regions. Our results

indicated that the strategy of focusing on exonic variants

is appropriate if most rare risk variants are located in exons.

However, if the majority of rare risk variants are located

in regulatory regions, then analyzing all rare variants

together, both exonic and nonexonic, can be more power-

ful than analyzing only the exonic variants. That is, the

increase in signal from including noncoding risk variants

can outweigh the additional noise of noncoding neutral

variants. Comparing the different tests, we noticed that

the CMAT, WSS, and collapsing test were equally powerful
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for the exon-only model. However, the CMATand theWSS

were more robust to variant misspecification and were

therefore significantly more powerful when we analyzed

data representative of whole-gene analysis. The CMAT

provides similar power to that of the WSS and is computa-

tionally more efficient. Because the WSS is based on

ranking individuals, its computation time is bounded by

the theoretical maximum of O(nlog(n)); the computation

time of the CMAT is linear with sample size. This difference

can be substantial for analysis of large sample sizes in

genome-wide studies.

A pooling statistic that accepts probabilistic genotypes

dramatically increases the range of possible rare-variant

study designs. Our simulations demonstrated the potential

of including genotypes from both direct sequencing and

imputation in the test statistic. Because genotypes for

rare variants are generally imputed with higher error rates

than common variants, it is important to propagate this

uncertainty into the analysis by using expected minor-

allele counts, as opposed to most likely genotype, in the

CMAT. Our simulation results show that one can gain

substantial power by augmenting sequencing datasets

with imputed samples. In particular, sequencing only

a fraction of available individuals and imputing the

remainder can recoup much of the power of a study that

sequences all samples and provide a major cost reduction.

Other methods for testing rare variants can most likely be

adapted so that there is a comparable gain of efficiency

from imputed data. Note that we modeled the sequencing

of an equal number of cases and controls, but more power-

ful sequencing strategies for observing risk alleles might

exist, for example, one such strategy might involve

sequencing mainly cases.24

We also provided an example of a rare-variant analysis

that does not require sequencing. Instead, rare variants

can be imputed into existing GWAS datasets from publicly

available reference panels. Single-marker tests have limited

power to detect an association at these imputed variants

because of both lowmaf and high uncertainty in imputing

rare variants.25 Pooling these variants and testing their

cumulative effect is more powerful and could uncover

additional signals in the data. We used the haplotypes

from the CEU samples in the 1000 Genomes Project to

impute rare variants into the existing GAIN Psoriasis

GWAS dataset. Our analysis shows that the CMAT can

identify interesting genes that cannot be found by single-

marker tests. The identified gene (SKIV2L) contains mul-

tiple rare variants, none of which achieved genome-wide

significance in a single-marker test. SKIV2L resides in the

HLA region of chromosome 6, which is thought to harbor

multiple psoriasis susceptibility genes. However, the bio-

logical interpretation is not clear. SKIV2L is not an obvious

candidate for psoriasis. Although SKIV2L might be a psori-

asis locus, it is also conceivable that multiple rare variants

in SKIV2L tag the same functional common variant in

another gene, and the observed signal might be the result

of reverse synthetic association.26 Further analysis is neces-
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sary to validate this finding. The analysis was limited by

the size of our reference panel, which contained only

112 haplotypes. Only 2889 genes contained two or more

coding variants with a maf <0.05 in this panel and were

thus eligible for the pooled analysis. Future releases from

the 1000 Genomes Project should provide low-coverage

sequencing of 2500 individuals and deep-exome rese-

quencing of the same 2500 individuals.19 This will increase

the number of imputable rare variants and make this anal-

ysis method more powerful.

Accurate prediction of functionally relevant sites and

appropriate weighting will reduce variant misspecification

and could further improve the power of pooling methods.

The weighting scheme proposed by Madsen and Brown-

ing13 is based on allele frequency and is most powerful

for risk variants under relatively high purifying selection.14

Alternatively, variants can be weighted according to

predictions of molecular function. In practice, bioinfor-

matic tools such as PolyPhen27 and SIFT28 are useful in pre-

dicting deleterious potential but are typically limited to

coding variants. Determining functionality of noncoding

variants is more difficult, and although databases con-

taining known phenotype-altering noncoding variants

exist (PupaSuite,29 for example), these are not applicable

to novel variants. Instead, identifying conserved regula-

tory regions within noncoding portions of a gene will be

crucial in determining which noncoding variants have

phenotype-altering potential and should be included in

an analysis.30 For this paper, rather than attempting to

optimize weights for our specific disease model, we

assumed very simple uniform weights and focused on the

overall performance of our test with respect to variant mis-

specification and imputation. However, we have included

a general weighing term into the statistic to allow any

desired scheme to be incorporated.

Our simulation results are based on several underlying

assumptions. Like other methods, our method assumes

that all rare variants pooled together have the same type

of effect. That is, either all are causative, the likely model

if risk variants are under purifying selection,5 or they are

all protective. If this assumption is violated and causal

and protective alleles are combined into a single statistic,

pooling methods will lose power. Our results also depend

on our disease model, specifically the range of allele fre-

quencies and effect sizes for risk variants. The true fre-

quency spectrum for risk alleles will depend on the

strength of purifying selection at the locus and can range

from extremely rare family-specific mutations to so-called

‘goldilocks’ alleles that segregate at low frequency in

the population.14 We evaluated a combination of both

models; this combination allowed frequencies between

:01% and 5% for risk variants. However, we showed that

our results also apply to analyses restricted to rarer variants

between 0:1% and 1%. Because we are interested in vari-

ants that would not be detected by existing association

methods, we assigned larger relative risks to rarer alleles.

Our results therefore apply to this class of risk variants
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Table 2. Summary of Empirical Distributions of Minor-Allele
Dosage for True Heterozygotes

Minor-Allele
Count in
Reference
Haplotypes

Fraction of Heterozygote Minor-Allele Dosages

<0.1 [0.1, 0.5) [0.5, 0.9) R 0.9

1 0.729 0.120 0.063 0.088

2 0.331 0.188 0.133 0.349

3 0.291 0.169 0.128 0.413

4 0.199 0.170 0.162 0.469

5 0.327 0.176 0.162 0.335

6 0.255 0.180 0.136 0.428

7 0.166 0.149 0.132 0.553
and do not generalize to extremely rare variants with

Mendelian inheritance patterns. In particular, we note

that our choice of disease model explains the poor perfor-

mance of the private allele test, which is best suited for

testing highly penetrant Mendelian-like risk alleles segre-

gating within families. We have included it in our analysis

because it is currently one of the few statistical tests

that has successfully provided evidence for rare-variant

associations.

In summary, the CMAT is a powerful and versatile tool

for analyzing the contribution of rare variants to the heri-

tability of common complex diseases. The test accounts

for the uncertainty that imputation methods can confer

to genotypes and can be used for reanalyzing existing

GWAS datasets.

8 0.203 0.195 0.179 0.422

9 0.091 0.114 0.128 0.667

10 0.100 0.159 0.195 0.546

11–20 0.061 0.094 0.118 0.727

21–30 0.043 0.054 0.092 0.811

31–40 0.016 0.039 0.081 0.865

41–50 0.016 0.051 0.100 0.834

51–60 0.006 0.023 0.050 0.921

61–70 0.011 0.039 0.087 0.863

71–80 0.009 0.026 0.072 0.893

81–90 0.007 0.017 0.054 0.923

91–100 0.005 0.019 0.065 0.911

Each distribution is conditional on the indicated minor-allele count in the refer-
ence haplotypes. Here we report results for Nseq ¼ 100 sequenced cases and
controls.
Appendix

Empirical Distributions for Expected Minor-Allele

Counts

We assume a set of cases and controls genotyped for a set of

tagSNPs across a 1 Mb segment that contains a 100 kb

region of interest. We assume that Nseq cases and controls

are randomly selected and sequenced at deep coverage in

the 100 kb region. Variants observed among the sequenced

samples in the region of interest are imputed into the

remaining samples.

We created empirical distributions of expected minor-

allele counts for imputed genotypes by assuming sequence

data for Nseq ¼ 100, 200, and 400 cases and controls and

tagSNPs for the remainder of the sample. For each, we first

simulated ten independent populations of ten thousand

1 Mb haplotypes by using cosi and for each region selected

a set of tagSNPsthat mimicked real-world tagging proper-

ties.22 For each 1 Mb region, the 100 selected tagSNPs

resulted in � 78% of the common variants having an

r2R0:8 with one of the selected tagSNPs, similar to the

tagging properties of the Illumina HumanHap300 Bead-

Chip SNP genotyping platform. From each population,

we drew a random subset of 4000 haplotypes and treated

the first 2 3 Nseq as sequenced in the middle 100 kb region

of interest (these sample sizes correspond to datasets with

N ¼ 1000 and Nseq sequenced cases and controls).

We statistically phased the 23Nseq haplotypes across the

entire 1 Mb region. These phased haplotypes then served

as a reference panel for imputation of the variants observed

in the middle 100 kb into the remaining haplotypes.

Phasing and imputation were performed with the software

program MaCH.20 MaCH includes a ‘‘states’’ option that

speeds computation by limiting the number of haplotypes

considered at each iteration of phasing or imputation.

Because our analysis focused on rare variants that might

only appear on a few haplotypes, we did not use the states

shortcut. This probably prolonged computation time but

improved imputation accuracy.
The American
We observed that imputation accuracy for rare variants

was dependent on the allele frequency, the total number

of haplotypes in the reference panel (2 3 Nseq), and the

number of times a variant was observed in the reference

panel (M.Z. and S.Z., unpublished data). Therefore, we

created empirical sampling distributions by binning the

observed expected minor-allele counts (dosage) by true

underlying genotype and the number of times the minor

allele was observed in the reference panel. We pooled anal-

ogous distributions across all ten realizations to average

over varying degrees of LD. The distributions for true

heterozygotes were bimodal and had peaks at 1.0, the

true dosage for a heterozygote, and 0.0, the true dosage

for a major-allele homozygote. Because the minor allele

is observed more often in the reference panel, imputation

was more accurate, as indicated by fact that the density of

the peak at 0.0 shifted to larger dosage values. Table 2

summarizes these empirical distributions for Nseq ¼ 100.

The < 0:1 and R0:9 columns capture the density in the

two peaks. The distributions for true major-allele homozy-

gotes consist of a point mass at 0.0 and a small amount of

density just above 0.0. As the number of minor alleles
Journal of Human Genetics 87, 604–617, November 12, 2010 615



observed in the reference panel increases, the density shifts

slightly away from the point mass.
Supplemental Data

Supplemental Data include four figures and can be foundwith this

article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

CMAT, http://www.sph.umich.edu/csg/szoellner/software/
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