
Global Gene Expression Analysis Reveals Evidence for
Decreased Lipid Biosynthesis and Increased Innate
Immunity in Uninvolved Psoriatic Skin
Johann E. Gudjonsson1,6, Jun Ding2,6, Xing Li3, Rajan P. Nair1, Trilokraj Tejasvi1, Zhaohui S. Qin2,
Debashis Ghosh4, Abhishek Aphale1, Deborah L. Gumucio3, John J. Voorhees1, Goncalo R. Abecasis2

and James T. Elder1,5

Psoriasis is a genetically determined inflammatory skin disease. Although the transition from uninvolved into
lesional skin is accompanied by changes in the expression of multiple genes, much less is known about the
difference between uninvolved skin from psoriatic patients as opposed to skin from normal individuals.
Multiple biochemical and morphological changes were reported decades ago in uninvolved psoriatic skin but
remain poorly understood. Here, we show dysregulation of 223 transcripts representing 179 unique genes in
uninvolved psoriatic skin, 178 of which were not previously known to be altered in their expression. The
proteins encoded by these transcripts are involved in lipid metabolism, antimicrobial defenses, epidermal
differentiation, and control of cutaneous vasculature. Cluster analysis of transcripts with significantly altered
expression identified a group of genes involved in lipid metabolism with highly correlated gene expression.
Promoter analysis showed enrichment for binding sites of three transcription factors; peroxisome proliferator-
activator receptor alpha (PPARA), sterol regulatory element-binding protein (SREBF), and estrogen receptor 2
(ESR2), suggesting that the coordinate regulation of lipid metabolic genes may be related to the action of these
factors. Taken together, our results identify a ‘‘pre-psoriatic’’ gene expression signature, suggesting decreased
lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin.
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INTRODUCTION
Psoriasis is a chronic inflammatory and hyperproliferative
skin disease, affecting over 6 million Americans (about 2%)
at an estimated cost of $1.6 to 3.2 billion annually
(Sander et al., 1993). The disease tends to strike early in life,
as the majority of cases are diagnosed in individuals less than
30 years of age, and a significant proportion of these cases
are in individuals less than 10 years old (Krueger et al., 1984).
Along with the unsightly cutaneous manifestations with a
negative impact on the quality of life (Gupta et al., 1993),
psoriasis is accompanied by inflammatory arthritis affecting
up to 40% of patients (Gladman, 1994).

That psoriasis has a genetic basis is undisputed, but many
of the causative genes remain to be identified (Gudjonsson
and Elder, 2007). Psoriasis is characterized by complex
alterations in epidermal growth and differentiation, along
with multiple biochemical, immunological, inflammatory,
and vascular abnormalities. It has been firmly established that
psoriasis is a T-cell-mediated disease (Nickoloff and Wrone-
Smith, 1999; Conrad et al., 2007) and available data suggest
that it may have an autoimmune basis (Gudjonsson et al.,
2004). Intraepidermal T cells are crucial for the development
of psoriatic epidermal hyperplasia (Conrad et al., 2007),
and it has been postulated that these cells may be reacting
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against self-antigens presented by HLA-Cw6 (Johnston et al.,
2004), which was recently shown to be the major genetic
determinant of psoriasis susceptibility (Nair et al., 2006,
2008).

Lesional psoriatic (PP) skin has been shown to have
a pattern of gene expression that is dramatically different from
that of normal (NN) skin of unaffected individuals. Some
of the earliest genes identified as having distinctive over-
expression in PP skin include transforming growth factor-a
(Elder et al., 1989), tumor necrosis factor-a (Nickoloff
et al., 1991), vascular endothelial growth factor and its
receptors (Detmar et al., 1994), proteinase inhibitors such
as peptidase inhibitor 3 (SKALP) (Nonomura et al., 1994),
hyperproliferation-associated keratins, K16 and K17 (Leigh
et al., 1995), and multiple genes mapping to the epidermal
differentiation complex on chromosome 1q21, including
S100A, loricrin, involucrin, small proline-rich region (SPRR),
and late cornified envelope (LCE) genes (Zhao and Elder,
1997). Subsequently, microarray studies have been used to
characterize large-scale gene expression changes in PP skin
compared with uninvolved, normal-appearing skin from
psoriatic patients (PN skin) and/or NN skin (Bowcock et al.,
2001; Zhou et al., 2003; Kulski et al., 2005; Romanowska
et al., 2008), or to the involved skin of atopic dermatitis
patients (de Jongh et al., 2005; Romanowska et al., 2008).
These microarray studies have identified many of the
candidates suggested in the original candidate gene studies,
as well as genes, which, to our knowledge, are previously
unreported/unknown to be implicated in the pathogenesis
of psoriasis. However, until now, detailed comparisons of
PN versus NN skin involving large numbers of patients
have been lacking.

Psoriatic skin has been shown to have biochemical
differences when compared with NN skin, with many of
these studies performed over three decades ago (Braun-Falco,
1971; Wilkinson, 1971). Interestingly, these morphologic
and metabolic alterations in uninvolved skin include
processes of lipid metabolism, predominantly in the horny
layer of the skin. These were characterized by changes in
phospholipid composition and levels and distribution
of several hydrolytic enzymes and dehydrogenases (Braun-
Falco, 1971; Wilkinson, 1971). Furthermore, increased bio-
synthesis of arachidonic acid metabolites (Ziboh et al., 1984)
and increased blood flow have been noted in PN skin (Klemp
and Staberg, 1983), but the etiology of these changes is
unknown.

The purpose of this study was to carefully characterize and
compare gene expression in normal (NN) versus unaffected
skin (PN) from psoriatic patients. Taking advantage of the
large size of our sample, we initially focused on progressive
differences between NN versus PN versus PP skin in an effort
to gain further insight into the disease process. During our
analysis, we identified strong patterns of coordinate expres-
sion of genes involved in lipid metabolism as well as innate
immunity and keratinocyte differentiation in PN versus NN
skin. Taking a bioinformatic approach, we identified three
transcription factors that could be responsible for the
coordinate expression of these lipid biosynthetic genes.

RESULTS
Lesional PP skin shows markedly different gene expression
profile compared with PN and NN skin

Principal components analysis (Figure 1) and unsupervised
hierarchical clustering (Supplementary Figure S1) based on
all probes and all samples revealed near-complete separation
of the PP samples from both the PN and the NN samples, with
only two of 58 PN samples overlapping with the PP samples.
However, there was a significant overlap between PN and
NN samples, which was confirmed by hierarchical cluster-
ing. These analyses indicated a distinct gene expression
profile of PP skin that is markedly different from those of PN
or NN skin, whereas the difference between PN and NN skin
is much more subtle.

Uninvolved PN skin has a large number of differentially
regulated genes compared with NN skin

On the basis of our criteria for differentially regulated
transcripts (Materials and Methods), we identified 223
transcripts that were differentially expressed between PN
and NN samples (72 upregulated, 151 downregulated)
(Supplementary Figure S2). Of these, 201 transcripts represent
known genes, 22 of which were redundant, giving a total
number of 179 unique differentially regulated genes in
uninvolved psoriatic skin (58 genes upregulated and 121
genes downregulated). The other 22 were transcripts for
hypothetical gene sequences. On the basis of permutation
testing, the mean of the number of differentially expressed
transcripts expected under the null hypothesis was 10.
Among the most strongly dysregulated genes (Table 1),
several of the downregulated transcripts encode proteins
involved in fatty acid metabolism, including ALOX15B
encoding a 15-lipoxygenase, FADS1 encoding a fatty acid
desaturase, and ELOVL3 encoding the elongation of very
long-chain fatty acids-like 3. Other downregulated transcripts
included YWHAE encoding 14–3-3e, ESR1 encoding estrogen
receptor 1 (ESR1), and GAL encoding galanin, which is a
vasoactive peptide. Among the most strongly upregulated
genes, several are encoded in the epidermal differentiation
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Figure 1. Principal component analysis. The first and second principal

components are shown. Two uninvolved samples (2/58) overlapped

minimally with the lesional samples, whereas a large overlap was observed

between the control and uninvolved samples.
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complex, including SPRR2B, SPRR2G, and SPRR3 and
LCED3 encoding proteins involved in terminal differentiation
of the epidermis (Marshall et al., 2001) as well as S100A8,
S100A9 and S100A7 encoding antimicrobial peptides in-
volved in innate immunity. Other upregulated genes also
encode proteins involved in innate immunity, including
DEFB4 encoding human beta defensin-2 (hBD-2), RNASE7
encoding a ribonuclease, which, similar to hBD-2, has broad-
spectrum antimicrobial activity (Harder and Schroder, 2002),
and IL1F9 encoding the proinflammatory cytokine IL-1e. No
matches (0/133) were found between our list of down-
regulated transcripts and previously published gene lists
(Zhou et al., 2003), and only one (psoriasin, S100A7) of the
58 upregulated genes identified by our study had been
previously reported (Zhou et al., 2003).

A large group of genes shows progressive changes from NN to
PN to PP skin

To identify genes that show progressive change through all
three sample groups, we used a threshold X1.3-fold change
and nominal Po0.05 between PN and NN samples, together
with X2-fold change in the same direction and false
discovery rate Po0.05 for comparing PP versus PN skin.
Using these criteria, 27 genes manifested a progressive
increase in gene expression (PP4PN4NN), whereas 23
genes showed progressive downregulation (NN4PN4PP,
Figure 2, Table 1). As expected, these genes were a subset of

those manifesting altered regulation in PN versus NN skin,
including S100A8, S100A9, and S100A7, SPRR2B, SPRR2G,
SPRR3, LCE3D, DEFB4, RNASE7, and IL1F9 in the upregu-
lated group, and GAL and several genes encoding
proteins involved fatty acid metabolism in the downregulated
group.

Confirmation of differentially expressed genes by QRT-PCR

To confirm and validate the microarray results, we performed
quantitative real-time RT-PCR (QRT-PCR) for several genes
including C10orf99, ALOX15B, GAL, and ELOVL3 (n¼25
each for NN, PN, and PP skin) (Figure 3). Relative to NN skin,
C10orf99 was upregulated 1.7-fold in PN skin (Po0.05) and
30-fold in PP skin (Po0.0001). In contrast, ALOX15B was
downregulated twofold in PN skin (P¼0.05) and 3.4-fold in
PP skin (Po0.01). GAL was downregulated 1.9-fold in PN
versus NN skin (Po0.05), and 10-fold down in PP versus
(Po0.01). ELOVL3 was reduced 2.4-fold in PN skin (Po0.05)
and 13.4-fold in PP skin (Po0.001). Thus, these results
uniformly confirmed the results of microarray analysis.

Hierarchical clustering of differentially expressed genes in PN
versus NN skin

To better assess the gene expression changes we observed in
PN skin, we performed an unsupervised hierarchical cluster-
ing on the 223 differentially expressed transcripts observed in
PN versus NN skin, either in the PN samples (Supplementary

Table 1. Several of the most up- and downregulated genes in normal-appearing skin from psoriatic patients (PN)
versus normal (NN) skin and their progressive changes in NN versus PN versus psoriatic (PP) skin

Fold change NN versus PN Fold change PN versus PP Fold change NN versus PP

Upregulated genes

C10orf99 1.811 22.862 41.393

SPRR2B 1.779 20.231 35.982

S100A7 1.774 10.322 18.309

LCE3D 1.737 14.060 24.421

SPRR2G 1.704 4.732 8.062

WFDC12 1.632 2.655 4.333

S100A9 1.565 36.174 56.601

HAL 1.526 3.095 4.723

IL1F9 1.498 24.258 36.338

DEFB4 1.469 134.078 196.997

Downregulated genes

ELOVL3 1.869 3.452 6.454

FLJ32569 1.854 3.703 6.867

HSD3B1 1.847 2.188 4.041

MLSTD1 1.842 2.835 5.222

GAL 1.801 3.543 6.383

KRT6L 1.724 2.102 3.623

THRSP 1.692 4.541 7.684

FADS1 1.636 2.101 3.437

MUC7 1.566 2.294 3.737

SCGB2A1 1.544 2.367 3.706
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Figure S3a) or in the NN samples (Supplementary Figure S3b).
The PN samples clustered into two main groups of 27 and 31
samples, respectively. By permutation testing, the prob-
abilities of observing by chance a cluster as deeply separated

from one upper level cluster as the observed two were
calculated to be P¼ 0.00024 and 0.0098, respectively. There
was no difference in body mass index or age observed
between the two clusters. This analysis was repeated for NN
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skin (Supplementary Figure S3b). The NN samples clustered
into two main groups of 16 and 48 samples, respectively, and
the probabilities of obtaining the observed clusters by chance
were P¼0.00012 and 0.24, respectively. It is noted that the
genes showing the most prominent clustering were the same
in both sets of samples, including nine genes involved in lipid
metabolism (THRSP, MLSTD1, FADS1, FADS2, SOAT1,
ACSBG1, ELOVL3, HSD3B1, and ALOX15B) as well other
genes including GAL, KRT6L, TF (encoding transferrin),
TMEM56, and FLJ32569. As a group, these genes were
expressed at a higher level more frequently in NN skin than in
PN skin (compare Figures 4a and b).

Gene ontology analysis identifies enrichment of several
biological processes including defense response and lipid
metabolism

To more rigorously identify biological processes encompass-
ing altered patterns of gene regulation in NN versus PN skin,
we used Gene Ontology (GO) analysis. Biological processes
significantly (Po0.05) enriched for upregulated transcripts in
PN versus NN skin include epidermal morphogenesis and
development, epidermal cell differentiation, oxygen trans-
port, keratinization, and defense response (Supplementary
Table S2), whereas processes significantly enriched for
downregulated transcripts included predominantly lipid and

fatty acid metabolism and biosynthetic pathways (Supple-
mentary Table S2).

Pathway analysis and gene–gene correlation within GO
categories reveal strong correlation between individual genes
within the lipid metabolic process

We used the ingenuity pathway analysis (www.ingenuity.
com) tool to perform pathway analysis on the group of genes
involved in lipid metabolism. Multiple functions within lipid
metabolism were significantly (Po0.01) affected, including
quantity, metabolism, conversion denaturation, uptake, and
synthesis (Supplementary Figure S4). As we noticed a tendency
for coordinate regulation in the hierarchical clustering
analysis, we assessed the correlation of transcript expression
between genes falling into significantly upregulated GO
categories. We found high correlation between individual
genes within the lipid metabolic process (Figure 4). However,
only subgroups of genes within GO categories of defense
response (Supplementary Figure S5) and keratinocyte differ-
entiation were highly correlated (Supplementary Figure S6).

Transcription factor and promoter analysis shows enrichment
for specific transcription factors

Of the 179 genes that we found to be differentially regulated
between PN and NN skin, the largest group belonged to the
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GO category of lipid metabolic process (n¼ 25) with a very
high pairwise correlation (Figure 4). The co-citation feature of
the Genomatix software suite (BiblioSphere, Genomatrix,
München, Germany) was used to identify 21 candidate
transcription factors for this group (Supplementary Table S1).
This list of transcription factors did not overlap with any of the
17 transcription factors that we found to be differentially
regulated in PN versus NN skin (data not shown). The most
highly represented transcription factors belonged to the

family of peroxisome proliferator-activated receptors (PPARs)
(Supplementary Table S1). Using the Genomatix software
(München, Germany) suite, we analyzed the promoter
sequences 500 bp upstream and 100 bp downstream from
the transcriptional start sites for each of the lipid metabolic
process genes. A total of 98 promoters were found for this
group. This was compared with a randomly selected set of 98
promoter sequences in the three separate groups of control
genes obtained from the same microarray analysis. Using the
GemsLauncher and MatInspector tools of the Genomatix
software, the promoter sequences were analyzed against the
21 candidate transcription factors identified by BiblioSphere.
Three of these transcription factors, PPARA, ESR2, and SREBF
(sterol regulatory element-binding protein), showed enriched
binding sites in the 25 lipid genes compared with the three
control groups (Figure 5). Although there was a slight
downregulation of PPARA on the microarray (1.15-fold,
Po0.05), we could not confirm or detect any differences in
the expression of these three transcription factors by QRT-
PCR (n¼30, data not shown). To further interrogate known
interactions among these three transcription factors and 25
lipid metabolic process genes, we uploaded these genes
(n¼28) into BiblioSphere to examine the gene interaction
networks. PPARA and ESR2 connected a majority of the
genes (17/25) in an extended interaction network (Figure 6).

DISCUSSION
We have previously used this same data set to evaluate the
activation of the Sonic Hedgehog Pathway in psoriasis
(Gudjonsson et al., 2009). In this study, we compared the
gene expression profiles of involved (PP) as well as clinically
normal-appearing (PN) skin of psoriatic patients with those
observed in normal (NN) skin of non-psoriatic individuals.
The large size of our sample allowed us to identify relatively
small but significant changes in the transcriptome of PN
relative to skin, revealing a coordinated program of gene
expression predominantly involving downregulation of lipid

PPARA ESR2 SREBF

60

50

40

30

20

10

0

Lipid group

High

Medium

Low

Number of promoter binding sites

Figure 5. Bioinformatic analysis of promoter-binding sites. The transcription

factors PPARA, ESR2, and SREBF were found to have an increased number

of promoter-binding sites in the lipid metabolism group compared with

three control groups consisting of genes with low, medium, and high

expressions in our data set.

FASN

ESR2

GAL

HSD3B1

ACSBG1

SRD5A1

ELOVL3

CRAT

AGPAT1

ACOT2

THRSP

FADS2

SOAT1LPIN1INSIG1

FADS1

PPARA

ALOX15B
CYP1B1

Figure 6. Pathway analysis of lipid metabolic process genes. To interrogate the known interactions among the 25 lipid metabolic process genes that are

co-regulated in PN and NN skin and the three transcription factors that show enriched numbers of binding sites in the promoters of these genes, we used

Genomatix BiblioSphere to build gene interaction networks. Two of the enriched transcription factors, PPARA and ESR, connected most (17/25) of the

genes in an extended network.

2800 Journal of Investigative Dermatology (2009), Volume 129

JE Gudjonsson et al.
Gene Expression in Psoriatic Skin



biosynthetic genes. We found 179 genes to be differentially
regulated in PN relative to NN skin (Table 1), many of which
showed progressive up- or downregulation in NN versus PN
versus PP skin (Figure 2). Only one of these genes has been
reported previously. These changes in gene expression
confirm biochemical and morphological observations made
on PN skin three decades ago (Braun-Falco, 1971; Wilkinson,
1971). Predominantly found in the stratum corneum, these
changes involved the levels and composition of phospho-
lipids, free alpha-amino acids, hydrolytic enzymes, and
several dehydrogenases. Additional changes in the epidermal
lipid composition (Wilkinson, 1971) led to the coining of the
term ‘‘histochemical parakeratosis’’ to describe these findings
(Braun-Falco, 1971). Taken together, these findings suggest
that PN skin might exist in a ‘‘pre-psoriatic state.’’ However,
it is important to note that NN skin can also manifest the
same coordinated downregulation of lipid biosynthetic genes
observed in PN skin, albeit less frequently (Supplementary
Figures S3a and S3b).

Given the strikingly coordinated expression of these
genes (Figure 4), our results prompted us to undertake
a systematic search for transcription factors that might
underlie this phenomenon. By both GO and pathway
analyses, we confirmed significant enrichment for genes
involved in lipid metabolism in transcripts that were
downregulated in PN versus NN skin (Supplementary Table
S2), and showed that many of these genes were further
downregulated in PP skin (Table 1). These results system-
atically identified a subset of coordinately expressed genes
involved in lipid metabolism (Figure 4), which we used to
carry out a bioinformatic search for transcription factors that
might help to explain our observations (Figures 5 and 6,
Supplementary Figure S7, Supplementary Table S1). The
results of our analysis suggest that these coordinated
abnormalities may be related to decreased activity of three
transcription factors (PPARA encoding PPAR-a, ESR2 encod-
ing estrogen receptor 2, and SREBF1 encoding sterol
regulatory element-binding transcription factor 1, (Figure 5).
Of these, ESR2 and PPAR-a bioinformatically connected 17
of the 25 lipid biosynthetic genes that we identified as
dysregulated in PN versus NN skin (Figure 6). Although we
were unable to detect changes in the mRNA expression of the
three candidate transcription factors by QRT-PCR, it does not
rule out differences in proteins levels or function of these
factors. Determination of this would require comprehensive
biochemical analyses that were not performed in this study.
Interestingly, our search revealed no evidence for activation
of inflammatory transcription factors secondary to circulating
cytokines or chemokines emanating from active plaques
(data not shown).

Dysregulation of transcripts relating to fatty acid signaling
and adipocyte differentiation has recently been described in
PP versus PN skin, and related to the activation of PPARd
(Romanowska et al., 2008). Indeed, we were able to confirm
significant dysregulation of 31 of 32 genes reported by
Romanowska et al. (2008) to be abnormally expressed in PP
versus PN skin and related to fatty acid signaling (data not
shown). Interestingly, PPARd overexpression has been shown

to suppress the activity of PPARg and PPARa (Shi et al.,
2002). Thus, the similarities between our data and those of
Romanowska et al. (2008) could be related to decreased or
suppressed activity of PPARa.

Among the downregulated lipid biosynthetic gene tran-
scripts that we identified in PN versus NN skin, ELOVL3 was
the one that was most extensively reduced (1.9-fold). It was
also progressively downregulated in NN versus PN versus PP
skin (Table 1). ELOVL3 is a member of a highly conserved
family of microsomal enzymes involved in the formation of
very long-chain fatty acids (Jakobsson et al., 2006), which are
important constituents of sphingolipids, glycerophospho-
lipids, triacylglycerols, and sterol- and wax-esters (Jakobsson
et al., 2006). ELOVL3 knockout mice develop thickened skin
with excoriations resembling eczematous skin (Westerberg
et al., 2004). Measurement of the lipid composition of the
epidermis of these mice showed an increase in eicosenoic acid
(C20:1) and a significant drop (40%) in C16:0, C18:0, and
C18:1 fatty acids (Westerberg et al., 2004), similar
to what has been shown for uninvolved psoriatic skin
(Wilkinson, 1971). These mice had skin barrier impairment
and increased transepidermal water loss (Westerberg et al.,
2004). Another progressively downregulated gene, ACSBG1,
encodes the acyl-CoA synthetase bubblegum family member
1. Acyl-CoA synthases carry out a fundamental reaction in fatty
acid metabolism: the thioesterification of the acyl group to
coenzyme A (CoA) (Watkins, 1997). The fatty acyl-CoA
product can have several metabolic fates, including incorpora-
tion into phospholipids, mono-, di-, and triacylglycerols,
sphingolipids, glycoplids, and cholesterol esters or acetylation
of proteins (Pei et al., 2006). Fruit flies lacking this gene have
elevated tissue levels of saturated very long-chain fatty acids
(Pei et al., 2006). Consistent with this observation, skin surface
lipids in uninvolved skin of psoriatic patients have been
described to have higher amounts of saturated C23 fatty acids
(Wilkinson, 1971). THRSP is also progressively downregulated
and encodes SPOT 14, a nuclear protein thought to activate
genes encoding the enzymes of fatty acid synthesis (Kinlaw
et al., 1992; Cunningham et al., 1998). Its role in skin
physiology is presently unexplored. MLSTD1 encodes a fatty
acyl-CoA reductase (FAR2) whose expression is limited to
tissues that are rich in sebaceous glands, such as skin (Cheng
and Russell, 2004). This enzyme converts fatty acids to fatty
alcohols, the first step necessary for the formation of ether
lipids and waxes. Another downregulated transcript predomi-
nantly expressed in the sebaceous glands, HSD3B1, encodes
hydroxy-delta-5-steroid dehydrogenase type I (Dumont et al.,
1992; Simard et al., 2005). Hydroxy-delta-5-steroid dehydro-
genases are required for the biosynthesis of steroid hormones
(Simard et al., 2005), and the expression of this enzyme in the
sebaceous glands allows these tissues to control local
concentrations of dehydroepiandrosterone and other steroids
in the skin (Simard et al., 2005). Interestingly, the sebaceous
glands are hypoplastic in psoriasis, particularly in scalp lesions
(Headington et al., 1989; Wilson et al., 1994). It is possible
that this relates to decreased expression of HSD3B1 leading to
decreased effect of steroid hormones on sebaceous gland
development and maintenance. Two other progressively
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downregulated genes participate in the generation of eicosa-
noids. FADS1 encodes fatty acid desaturase 1, which
participates in the conversion of polyunsaturated fatty acids
into arachidonic acid, the direct precursor of prostaglandins
and leukotrienes (Lewis and Austen, 1984; Schaeffer et al.,
2006). ALOX15B is also downregulated in PN skin and
encodes 15-lipoxygenase type 2, another enzyme involved in
arachidonic acid metabolism (Jiang et al., 2006). Reduced
expression of ALOX15B might explain the longstanding
observation that in vitro synthesis of 12-HETE is increased in
PN relative to NN skin (Kragballe et al., 1986).

Other transcription factors that have been implicated in
the formation of the lipid component of the skin barrier
during development include KLF4 (Segre et al., 1999) and
GATA-3 (de Guzman Strong et al., 2006). Although we did
not find evidence for transcriptional involvement of KLF4 or
GATA3 in our study (data not shown), psoriasis is character-
ized by markedly impaired epidermal barrier function
(Ghadially et al., 1996). Reminiscent of psoriasis, Elovl3
expression was downregulated in GATA-3 knockout mice,
whereas S100a8, S100a9, Lce, Defb3 (the murine homolog of
DEFB4), and protease inhibitor genes were upregulated (de
Guzman Strong et al., 2006). These findings are consistent
with the highly integrated functions of the epidermal lipid
barrier and the innate immune system in host defense.
Antimicrobial peptides such as cathelicidin and beta-defen-
sins are co-packaged along with lipids within epidermal
lamellar bodies before their secretion (Oren et al., 2003;
Aberg et al., 2008), and coordinate regulation of barrier lipid
production and antimicrobial peptides by permeability
barrier disruption has been shown (Aberg et al., 2008). The
similarity between the genes whose expression is perturbed
in psoriasis and in GATA-3 knockout mice is striking, and
taken together with the lipid abnormalities we have observed,
they are strongly suggestive of an incipient defect involving
the integrated lipid barrier-innate immune axis in the stratum
corneum of PN skin. A somewhat different scenario may take
place in atopic dermatitis, in which mutations in the FLG
gene encoding filaggrin, a protein critical for corneocyte
maturation (Candi et al., 2005), lead to defects in the
keratinocyte-cornified envelope (Candi et al., 2005; Hudson,
2006). Thus, instead of being caused by a defective protein
within keratinocytes (the bricks), as is the case with atopic
dermatitis, the stratum corneum defect in psoriasis may
involve defective ‘‘mortar’’ between the keratinocytes.
Interestingly, psoriasis and atopic dermatitis differ markedly
in their expression of innate immune genes, with much lower
expression of S100A7, S100A8, S100A9, DEFB4, and PI3 in
chronic atopic dermatitis than in psoriasis despite compar-
able epidermal hyperplasia. (de Jongh et al., 2005) Whether
the altered lipid biosynthetic program that we have identified
here is also characteristic of atopic dermatitis remains to be
determined. It should be noted that the gene expression
changes that we observe are relatively small, ranging from
1.3- to 1.86-fold in contrast to up to 200-fold changes we
observe in lesional skin (Table 1). Such subtle changes in
gene expression are not unexpected as the skin in these
patients is clinically normal. However, it can make it more

difficult to determine the contribution of individual factors.
Other future studies should be directed toward defining
psoriasis susceptibility genes and determining whether they
are involved in the biological mechanisms underlying the
coordinated alterations of gene expression programs in PN
versus NN skin.

MATERIALS AND METHODS
Patients

Fifty-eight psoriatic patients and 64 normal healthy controls were

enrolled in the study. Informed consent was obtained from all

patients, under protocols approved by the Institutional Review Board

of the University of Michigan Medical School. This study was

conducted according to the Declaration of Helsinki Principles. The

criterion for entry of a case was the presence of one or more sharply

demarcated, erythematous, scaly psoriatic plaques that were not

limited to the scalp. In those instances where there was only a single

psoriatic plaque, the case was considered only if the plaque occupied

more than 1% of the total body surface area. Study patients did not

use any systemic anti-psoriatic treatments for 2 weeks before or

topical anti-psoriatic treatments for 1 week before biopsy. Gender was

balanced in both case and control cohorts. The mean age of controls

was 41.1 years (range 18–75), whereas the mean age of patients was

48.5 years (range 21–69). The study patients were recruited from the

greater Detroit area and all the patients and controls used in this

analysis were Caucasian. Two biopsies were taken under local

anesthesia from each psoriatic patient; one 6 mm punch biopsy was

obtained from PP skin and the other from PN skin, taken at least 10 cm

away from any active plaque. One or two biopsies were obtained

from healthy controls. The PN and NN skin biopsies were always

taken from the buttocks or upper thighs.

RNA processing and microarray hybridization

Biopsies were snap-frozen in liquid nitrogen and stored at �801C

until use. Biopsies were crushed with a hammer while still frozen

and total RNA isolation was performed using a commercial kit

(RNeasy, Qiagen, Chatsworth, CA), using glass beads (www.

biospec.com cat11079125) for homogenization. RNA quantity and

quality was measured on an Agilent 2100 Bioanalyzer (Agilent

Technologies, Palo Alto, CA); only samples yielding intact 18S and

28S ribosomal RNA profiles were used. cDNA synthesis and in vitro

transcription for probe biotinylation were performed on 5 mg of total

RNA according to the manufacturer’s protocols (Affymetrix, Foster

City, CA). Samples were run on HU133 Plus 2.0 arrays (Affymetrix,

Foster City, CA) to query expression of B54,000 probes according to

the manufacturer’s protocol.

QRT-PCR

Quantitative RT-PCR was performed on NN samples from 25 normal

controls and on paired PN and PP samples from 25 psoriatic patients.

Primers for the genes ALOX15B, C10orf99, GAL, and ELOVL3 were

obtained from Superarray Biosciences (Frederick, MD). Results were

normalized to the expression of the housekeeping gene; ribosomal

protein, large, P0 (RPLP0). The reverse transcription reaction was

performed on 0.5 mg of RNA template and cDNA was synthesized

using anchored-oligo(dT)18 primers as instructed by the manufac-

turer (Roche Diagnostics, Mannheim, Germany). QRT-PCR was

carried out on a LightCyclerTM 2.0 system (Roche Diagnostics).
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The reaction profile consisted of an initial denaturation at 951C

for 15 minutes followed by 40 cycles of PCR at 951C for 10 seconds

(denaturation), 581C for 10 seconds (annealing), and 721C for

10 seconds (extension). The fluorescence emitted was captured at

the end of the extension step of each cycle at 530 nm. Primers for

ESR2, PPARA and SREBF1 (Applied Biosystems Inc., Foster City, CA),

and QRT-PCR was carried out using an Applied Biosystems 799HT

Fast Real Time PCR System (Applied Biosystems Inc.). QRT-PCR for

these three primers was performed on 30 NN, 30 PN, and 30 PP

samples.

Data analysis and statistics
The raw data from 180 microarrays were processed using the

Robust Multichip Average method (Irizarry et al., 2003) and then

adjusted to account for gender and batch effects. Hierarchical

clustering (using a ‘‘complete’’ agglomeration method) and principal

components analysis were performed on the adjusted expression

data using the publicly available software R (www.r-project.org,

Vienna, Austria). Gene expression was contrasted between

PN versus NN based on the following criteria: X1.3-fold change

in the means of expression in two groups and nominal P-value

p0.05. We used permutation (i.e., permuting patients’ labels) to

determine the expected number of differentially expressed genes by

chance, and hence estimated the false discovery rate of our

differential expression gene list. Those genes that were differentially

expressed between PN and NN skin were used to perform

hierarchical clustering on both PN and NN skin samples. Signifi-

cance of the clusters obtained was assessed by permutation testing.

Specifically, we permuted sample labels and calculated the

probabilities of observing by chance same-sized clusters as deeply

separated from the one upper-level cluster as the observed clusters

for both PN and NN skin.

Gene Ontology. Gene Ontology category enrichment analysis was

performed using the publicly available software DAVID (Database

for Annotation, Visualization and Integrated Discovery, http://

david.abcc.ncifcrf.gov/, Bethesda, MD). The goal of this analysis

was to search for GO terms in molecular function, biological

process, and cellular component that were significantly enriched in

the gene lists obtained above. As this was an exploratory analysis,

P-value p0.001 was used as the stringent significance criterion and

P-value p0.05 as the loose significance criterion. For those GO

categories that were significantly changed, we performed gene–gene

correlation analysis within each GO term.

Ingenuity pathway analysis

Data were analyzed through the use of Ingenuity Pathway Analysis

(Ingenuity Systems, www.ingenuity.com, Redwood City, CA). For

Network Generation, a data set containing gene identifiers and

corresponding expression values was uploaded into the application.

Each gene identifier was mapped to its corresponding gene object in

the Ingenuity Pathways Knowledge Base. A 1.3-fold cutoff, as

described above, was set to identify genes whose expression was

significantly differentially regulated. These genes, called focus

genes, were overlaid onto a global molecular network developed

from information contained in the Ingenuity Pathways Knowledge

Base. The networks of these focus genes were then algorithmically

generated on the basis of their connectivity.

Promoter analysis
Promoter analysis was performed on genes belonging to the GO

category of ‘‘lipid metabolic process,’’ which was the largest group of

genes within our list of differentially regulated genes in PN versus NN

skin. As depicted in Supplementary Figure S7, these genes were

uploaded to Genomatix Bibliosphere (www.genomatix.de, München,

Germany) and filtered according to co-citation in the literature. This list

was subsequently run against all known transcription factors (4600) to

identify candidate transcription factors in our data set. Control genes

were arbitrarily selected from our microarray data. The selection criteria

were that there was no difference between control and uninvolved skin

(o0.3% difference in expression between uninvolved and normal skin

and nominal P40.05). The control group of genes was split into three

separate groups based on low expression (40 transcripts, absolute

expression values o4), medium expression (40 transcripts, absolute

expression values between 7 and 8), and high expression (40 transcripts,

absolute expression values higher than 11.6). The promoter sequences

(500 base pairs (bp) upstream and 100bp downstream of the

transcriptional start site) for the lipid genes and the three control groups

were retrieved from the Genomatix promoter database using Gene2-

Promoter and Eldorado tools of the Genomatix software suite (http://

www.genomatix.de). Binding sites in promoter sequences were deter-

mined using MatInspector tools of the Genomatix software suite

(http://www.genomatix.de). Overrepresented transcription factors were

uploaded into BiblioSphere for determination of gene-interaction networks.
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