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up 20% of the trait variability and 4 measures/subject are 
taken, the proportional increase in LOD score ranges from 
38% for traits with heritability of ~20% to 63% for traits with 
heritability of ~80%. An R package is provided to determine 
optimal number of repeated measures for given measure-
ment error and cost. Variance component and regression 
based implementations of our methods are included in the 
MERLIN package to facilitate their use in practical studies. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 In quantitative trait studies, taking repeated pheno-
type measures for each subject may increase the power. 
The approach is especially useful when measurement er-
ror is large or the relative cost of recruiting and genotyp-
ing additional subjects is high. It is important for a link-
age analysis to appropriately take into account these re-
peated measures. Boomsma and Dolan  [1]  use structural 
equation modeling approach to analyze multivariate 
traits. Levy et al.  [2]  and de Andrade et al.  [3]  analyze lon-
gitudinal data by extending the standard variance com-
ponents approach  [4, 5] . Although in principle repeated 
measurements can be treated as multivariate traits or lon-
gitudinal data  [6–8, 22] , here we restrict our attention to 
modeling for repeated measurements for traits whose 
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 Abstract 

  Background:  When subjects are measured multiple times, 
linkage analysis needs to appropriately model these repeat-
ed measures. A number of methods have been proposed to 
model repeated measures in linkage analysis. Here, we focus 
on assessing the impact of repeated measures on the power 
and cost of a linkage study.  Methods:  We describe three al-
ternative extensions of the variance components approach 
to accommodate repeated measures in a quantitative trait 
linkage study. We explicitly relate power and cost through 
the number of measures for different designs. Based on 
these models, we derive general formulas for optimal num-
ber of repeated measures for a given power or cost and use 
analytical calculations and simulations to compare power 
for different numbers of repeated measures across several 
scenarios. We give rigorous proof for the results under the 
balanced design.  Results:  Repeated measures substantially 
improve power and the proportional increase in LOD score 
depends mostly on measurement error and total heritability 
but not much on marker map, the number of alleles per 
marker or family structure. When measurement error takes 
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variance components do not change appreciably across 
time (except due to random measurement error). This al-
lows us to focus the relationship between the power and 
cost of different study designs for quantitative trait link-
age analysis and the number of repeated measures of the 
phenotype of interest taken for each subject. We also pro-
vide general implementations of these approaches, for 
both variance component [Amos et al.] and regression-
based [Sham et al.] linkage analysis, in our MERLIN soft-
ware package.

  To analyze repeated measures, summary statistics 
such as the average of observed measurements are usu-
ally used to take advantage of the models and implemen-
tations designed for single measure. In this case, standard 
packages such as SOLAR  [5]  and MERLIN  [9]  can then 
be used to analyze the averaged measurements. Unfortu-
nately, when different numbers of measures are available 
for each subject, this approach is invalid and likely to re-
sult in a loss of efficiency.

  Here repeated measures are modeled explicitly and we 
use asymptotic theorems to explore the power of QTL 
linkage tests. Combining these theorems with a cost func-
tion that summarizes phenotyping, genotyping and gen-
eral fixed costs, the optimal number of repeated measures 
and sample size can be determined for a proposed study.

  We consider three analytical strategies: (a) a full mod-
el that explicitly incorporates all measurements for all 
subjects; (b) a simplified model that uses only the average 
phenotypic measurement and the number of measure-
ments taken for each subject; and (c) a further simplified 
model that only considers the average phenotypic mea-
surement for each subject. We find that repeated mea-
sures provide substantial power improvements across ge-
netic models. The proportional increase in expected LOD 
score depends mostly on measurement error and total 
heritability but not much on marker map or number of 
alleles per marker. Given a fixed sample size, analysis of 
repeated measures can have a dramatic impact on power. 
For example, when measurement error takes up 20% of 
the trait variability and 4 measures per subject are taken, 
the proportional increase in expected LOD score ranges 
from 38% for traits with low heritability (e.g. 20%) to 63% 
for traits with high heritability (e.g. 80%). When 2 mea-
sures per subject are taken, the increase ranges from 23 
to 36%. We identify the optimal number of repeated mea-
sures for different settings and show that when the num-
ber of measures is appropriately taken into account the 
average measure is a good balance between statistical 
power and computation efficiency.

  Methods 

 In this section, we briefly review the variance component 
method for quantitative trait linkage analysis and then extend the 
model to accommodate repeated measures for arbitrary pedi-
grees, without inbreeding.

  Variance Component Model 
 Let  Y  = ( y  1 , ...,  y  n ) �  be the vector of quantitative trait values for 

a pedigree with n subjects and no inbreeding.  Y  is assumed to fol-
low a multivariate normal distribution with mean  �  = ( �  1 , ...,  �  n ) �  
and variance-covariance matrix   �  . The effect of covariates can 
be modeled by letting  �  =  X  � , where  X  is the design matrix for 
covariates and  �  are the coefficients for each covariate.

  In general,   �   will have the form: 
2 ,i i

i
�

 where  �   2  i  is a scalar variance component and  �  i  is the correspond-
ing covariance structure matrix which depends on the effect  �   2  i  is 
representing. When major gene effect and polygenic effect are of 
interest, the  �  can be defined as:   � = � �   2  mg  + 2��  2 pg + In�  2 e 
  where  �   2  mg  is the additive genetic variance due to the major gene; 
the element  �  ij  of  �  is the proportion of alleles shared IBD at the 
test locus between subjects  i  and  j ;  �   2  pg  denotes the polygenic vari-
ance which is the genetic variance due to all residual additive ef-
fects not explained by the QTL;  �  is a matrix of genetic kinship 
coefficients; �  2 e is the subject-specific environmental variance 
and I n  is the  n   !   n  identity matrix  [4, 5, 10, 11] . The model can be 
readily extended to include other effects of interest, such as ge-
netic dominance. 

 The effects in variance component model can be assessed 
through likelihood ratio tests. For example, the test comparing 
 H  0  :   �   2  mg   = 0 versus  H  1  :  �   2  mg     1  0 is used to assess evidence for a 
major gene impacting the quantitative trait.

  Full Model with Repeated Measures 
 Let  Y  ij  be the  j -th measurement of the  i -th subject for the quan-

titative phenotype of interest. Assume  m  i  repeated measures are 
taken for subject  i . Then, let:

   Var ( Y  ij ) =  �   2  mg  +  �   2  pg     +�  2 e +�  2 m    i  = 1, ...,  n     j  = 1, ...,  m  i 
   Cov ( Y  ij  1 ,  Y  ij  2 ) =  �   2  mg  +  �   2  pg    +�  2 e                           j  1   0   j  2                (1)
   Cov ( Y  i  1  j  1 ,  Y  i  2  j  2 ) =  �  i  1  i  2   �   2  mg  + 2  �   i  1  i  2   �   2  pg                       i  1   0   i  2 

  Here,�  2 m represents the error specific to each measurement. This 
model is rather general. The covariance between repeated mea-
suresments of the same subject follows the compound symmetry 
structure  [12] . This model is valid when measurement errors 
within a subject are (a) independent or (b) equally correlated. In 
the latter setting the correlation between measurements is ab-
sorbed by the  �  2 e    component. 

 Under the assumption of normality and because the variance-
covariance structure of residuals does not involve the fixed effect 
parameters  � , the distribution of the likelihood ratio statistics 
about a variance component does not depend on the fixed effects 
 �   [13] . Although our model assumes no time effect in the vari-
ance-covariance matrix, if the time effect were included as a fixed 
effect, the results of this paper remain unchanged. Longitudinal 
data can therefore be accommodated in this limited manner by 
specifying time dependent covariates as the fixed effects. For sim-
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plicity and without loss of generality we assume the mean of 
quantitative trait is zero, with no covariate effects. Hence all the 
phenotypic variation can be explained through the similarity be-
tween relatives and the variance components �  2 m g , �  2 p g , �  2 e and 
 �  2 m    .

  Model for Average Measures 
 An alternative to using the model specified in (1) above is to 

use the average measurement for each subject [e.g.  2 ] instead of 
individual measurements. This approach results in smaller vari-
ance-covariance matrices and thus requires less computation.

  Let 

1

1 m

i ij
ji

i
Y Y

m

 be the average phenotype of subject  i , for  i  = 1, ...,  n . Using these 
averages, the model for the variances and covariances becomes: 

    Var ( Y  i ) = �   2 m g  + �   2 pg   +  �   2 e    +  �    2  m  / m  i               i  = 1, ...,  n 
   Cov (  Y   i  1 ,   Y

   i  2 ) =  �  i  1  i  2  �   2 mg   + 2  �   i  1  i  2   �   2 pg                 i  1   0   i  2                      (2)

  For balanced designs, where each subject has the same number 
of repeated measures, it can be shown that, although model (2)
requires less computation, model (1) and (2) give identical esti-
mates of genetic variance components (excluding the environmen-
tal and measurement error variance component, which are not 
iden tifiable) and lead to the same value for linkage test statistics. 
Details of the equivalence proof are given in the Appendix A. 

 Furthermore, when the number of repeated measures mi = m 
for all i the standard variance component model:

   Var ( Y  i ) =   �   2 mg     +  �   2 pg    +  �   2 e   *                             i  = 1, ...,  n 
   Cov ( Y  i  1 ,  Y

  i  2 ) =  �  i  1  i  2    �   2 mg     + 2  �   i  1  i  2   �   2 pg                 i  1   0   i  2                        (3)

  can be used to construct linkage test without loss of efficiency, 
where   �   2 e *  =   �   2 e     +   �   2 m       / m  and  m  i  =  m  for  i  = 1, ...,  n . Therefore, 
standard software packages for QTL linkage analysis can be 
used. 

 When  m  i ’s are not all equal, as in unbalanced designs, the 
standard variance component model (3) is not valid because   �   2 e *    
will be different across subjects, potentially distorting estimates 
of the genetic variance components and test statistics. Model (2), 
which takes into account different numbers of measures for each 
subject, remains a valid model. Through simulation, we show that 
it is slightly less efficient than the full model (1).

  Analytical NCP for Balanced Design 
 For simplicity we based our analytical calculation on the bal-

anced design. Under general regularity conditions, classical prop-
erties of likelihood ratio tests can be used to calculate the power 
of the test for a given sample size or the sample size required to 
achieve a desired power  [15] .

  Under the Null hypothesis when there is no major gene effect, 
the likelihood ratio test statistics is asymptotically distributed as 

2
1

1 1
: 0 ,

2 2
�

 a mixture of a chi-squared distribution with one degree of free-
dom and a unit point mass at zero. Under the alternative hypoth-
esis, the likelihood ratio test statistics approximately follow a non-
central chi-squared distribution with non-centrality parameter 

 

1
,

F

f
f

�

  where  �  f  is the non-centrality contributed by the  f -th of  F  families 
and 

    �  f  = log  �  (�   2 mg   +  �   2 pg   ) 2  �   f  +   �   2 e *      I   n f    �  – 
 E   �   log  �   �   2 mg      �   f  +  �   2 pg    2  �   f  +   �   2 e *      I   n f    �  .                             (4)

  Here,  n  f  is the size of the  f -th family and  E   �   denotes an expecta-
tion over all possible allele-sharing states that can be calculated 
by averaging over all possible inheritance vectors  [14, 21] . The 
power of the test is then given by: 
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  where 
 

F

1

2

1, f
f

�

�

  follows a one degree of freedom chi-squared distribution with 
non-centrality parameter  

 

1

F

f
f
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  and  C   	   is the 100(1 –  	 ) percentile of 
 

2
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  To simplify the presentation, we consider  F  families with the same 
pedigree structure and denote  �  =  �  f  for all  f , so that 

 

1
.

F

f
f

F� �

  For any desired power the required number of families  F  or of re-
peated measures  m  can then be solved numerically. 

 Cost-effectiveness 
 Formula (4) allows us to analytically compare power for differ-

ent studies; each characterized by a specific family structure, the 
number of families examined,  F , and the number of repeated mea-
sures,  m , for each subject. To study cost-effectiveness of different 
designs, we first introduce a cost function for each design. Let:

   C  0  = Fixed cost of the study
   C  s  = Cost per subject recruited and genotyped (total Fn sub-

jects)
   C  p  = Cost per phenotype measurement (m measures per 
subject)
  Total cost  C  =  C  0  +  F   �   n   �   Cs   +  F   �  n  �  m   �   C  p 

  From the last section, we know that the power is determined by 
 F  �  the non-centrality parameter and that  �  depends on  m  through 
  �   2 e *   . We denote  �  as  � ( m ).

  For any two combinations of  m  and  F  : ( m  1 ,  F  1 ) and ( m  2 ,  F  2 ), 
maintaining the same power requires  � ( m  1 ) F  1  =  � ( m  2 ) F  2 . Without 
loss of generality, we assume  m  1   1   m  2  so that  � ( m  1 )  1   � ( m  2 ). The 
total costs for the first design and the second design are  C  0  +  
F  1   �   n   �   C  s  +  F  1   �   n   �   m  1   �   C  p  and  C  0  +  F  2   �   n   �   C  s  +  F  2   �   n   �   m  2   �   C  p , 
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respectively. By simple algebra, taking  m  1  (more) measures will 
provide the same power but a lower cost than taking  m  2  (less) 
measures per subject when the following inequality holds: 

1 2 1 2

1 2
1 2

/
/ 1

s
m

p
,m

m m m mC
CR

C m m
� �

� �

�  (5)

  CR  m  1  ,  m  2  defined above is called the break-event for cost ratio
 C  s / C  p , where taking  m  1  measures is as cost-effective as taking  m  2  
measures per subject. When this cost ratio is higher (e.g. when 
phenotyping costs are relatively small compared to subject re-
cruitment and genotyping costs), designs that take more mea-
sures per subject are favored. 

 Note that, for a given total cost (or power), the combination of 
 m  and  F  that maximizes power (or minimizes the total cost) can 
be identified numerically.

  For unbalanced designs, CR can be approximated through 
simulation by using the ratio of expected LOD (ELOD) scores to 
replace  � ( m  1 )/ � ( m  2 ) in formula (5).

  Simulation 
 We perform simulations to compare power for different num-

bers of repeated measures across several scenarios (varying dis-
tance between markers from  � 0 to  � 10 cM, considering SNP and 
microsatellite markers, and varying major gene heritability, total 
heritability and measurement error from 2 to 20%, 8 to 80% and 
0 to 60% of trait variability, respectively).

  For unbalanced designs, we attempted to mimic designs we 
have encountered in actual studies. For example, we simulated a 
situation where subjects with an extreme initial measurement 
were measured a second time. Thus, we first simulated one mea-
surement for every subject. Next, we ordered subjects based on 
their simulated measurement and generated an additional mea-
surement for  	 /2 subjects at the top and  	 /2 subjects at the bottom 
of the list. This design reflects the ‘intuition’ that it may be more 
fruitful to focus effort on measuring extreme subjects. In this de-
sign, the average number of measurements per subject is 1 +  	 . 
We let  	  = 20% and  	  = 10%. In an alternative unbalanced design, 
referred to as the random design, the number of measures for each 
subject follows an exponential distribution. This mimics the situ-
ation where measurements are missing completely at random. For 
each subject, we draw independent random number (rounding to 
the nearest greater integer) from an exponential distribution with 
mean equal to 0.5, 1 and 2, respectively. The maximum number 
of measurements per subject was set to 4.

  In each simulation, we simulated 1000 families and the results 
are based on 2000 simulations. The average of LOD scores at the 
QTL is used to estimate the ELOD. Power is measured by the pro-
portion of likelihood ratio test p values !0.001. The cost-effec-
tiveness break-event for cost ratio,  CR  m  1  ,  m  2 , is also presented to 
facilitate comparison between different designs.

  Results 

 Analytical Results 
 Based on the average model (formulas 2 and 4), we can 

examine the ELOD (hence the power) for different set-
tings under the balanced design and assuming markers 

are fully informative.  Figure 1  shows how the ELOD 
changes as the heritability, defined as ( �   2 mg    +  �   2 pg   )/( �   2 mg    + 
�   

2 pg   +  �    2  e ), increases for different numbers of repeated 
measures. For example, when the heritability is 40%, in-
creasing the number of measures from 1 to 3 results in a 
2-fold increase in ELOD. We also note that taking more 
repeated measures results in more rapid increases in 
ELOD for simulated traits with greater heritability.

  According to (5) we can determine the optimal number 
of repeated measures for different ratios of genotyping 
and phenotyping cost and degrees of measurement error. 
 Figure 2  shows the contour plot for the optimal number 
of repeated measures when the cost ratio  C  s / C  p  ranges 
from 0.01 to 50 and measurement error variance ranges 
from 0.11 to 1.5 (corresponding to 10–60% of the total 
trait variance). For example, when measurement error 
variance is 0.4 (corresponding to 28.6% of the total trait 
variance), taking 2 measurements per subject is cost-ef-
fective if the cost ratio is between 1.11 and 4.17. When the 
ratio of genotyping and recruitment costs to phenotyping 
costs is  ! 1.11, it is preferable to take a single measurement 
and collect more subjects. When this ratio is  1 4.17, it is 
preferable to take additional measurements and collect 
fewer subjects. When the cost ratio is between 9.09 and 
15.62, taking 4 measurements per subject is the best. The 
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  Fig. 1.  Expected LOD score for 1000 nuclear families with 4 off-
spring, where  �   2 mg    = 0.2,  �   2 pg    = 0, ..., 0.8,  �   2 e    = 0.8 –  �   2 pg    and �   2 m   = 
 �   2 mg    +  �   2 pg    +  �   2 e    = 1. m = the number of repeated measures. 
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ranges of  figure 2  should include a variety of realistic sce-
narios. For example, chip based genotyping for genome-
wide linkage studies typically costs a few hundred dollars 
per subject whereas phenotyping costs are widely vari-
able, ranging from a few dollars per subject (for mail-in 
questionnaires  [24] ) to several hundred dollars (for ex-
pensive imaging measures or biological assays). The mea-
surement error as well as the intra-individual environ-
mental variance could range from very low (5%), for an-
thropometric measures such as height, to quite high (40%), 
for traits such as micro-array summaries of gene expres-
sion and questionnaire based assessments of personality.

  Simulation Results 
 We simulated three scenarios: (1) One microsatellite 

marker with 20 alleles and 0 cM between the marker and 
the QTL to approximate a fully informative marker. (2) 
Ten microsatellite markers each with 4 alleles and with 
10 cM separating consecutive markers; the QTL placed in 
the middle of the markers. (3) Fifty SNPs and 2 cM be-
tween consecutive markers; the QTL again placed in the 
middle of the SNPs. For each scenario, the trait variance 
excluding measurement error was fixed at 100, that is 

 �   2 mg    +  �   2 pg    +  �   2 e    = 100. The major gene effect  �   2 mg    was set 
at 20. Polygene effects �   2 pg   ranged from 0 to 60. Measure-
ment error variance  �   2 m    ranged from 11 to 150 (corre-
sponding to 10–60% of the total trait variance). In each 
independent sample, we simulated 1000 nuclear families 
with 4 offspring each. Relative power for designs with dif-
ferent numbers of measurements varied only slightly for 
different family structures (online supplementary table 1, 
www.karger.com/doi/10.1159/000194977), which includes 
sibships with 2–6 siblings and cousin pedigrees) and so 
our presentation focuses on nuclear families with 4 off-
spring.

  Simulation results again show repeated measures can 
provide substantial power improvements ( table 1 ,  fig. 3 ). 
 Table 1  shows the ELOD and power of balanced designs 
for a simulated microsatellite panel (scenario 2). Taking 2 
measures per subject increases ELOD by 52% to 75% and 
power at  	  = 0.001 by 63% to 78%.  Figure 3  shows the av-
erage LOD score profile for the microsatellite panel (sce-
nario 2, major gene effect 20 (or 12% total variance), poly-
gene effect 40 (or 24% total variance), and measurement 
error 67 (or 40% total variance). In this case, taking 1 mea-
sure per subject results in an average peak LOD score of 
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  Fig. 2.  Contour plot for optimal number of repeated measures 
when the cost ratio ranges from 0 to 50 and  �   2 m    ranges from 0.11 
to 1.5 (10–60% of total trait variance). Trait variance excluding 
measurement error is fixed to 1 (�   2 mg   = 0.2, �   2 pg   = 0.4,  �   2 e    = 0.4). 
The numbers on the plot indicate the optimal number of repeated 
measures. 
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only 2.22. Taking repeated measures increases the average 
peak LOD to 3.69 (2 measures) and 5.04 (4 measures).

  Since IBD estimation does not affect the accuracy of 
estimates of measurement error variance, the propor-
tional increase in expected LOD score (ELOD ratio) de-
pends mostly on measurement error and total heritabil-
ity but not much on marker map or number of alleles per 
marker ( table 2 ), which mostly impact the precision of 

QTL effect size estimates. This suggests that the optimal 
design (in terms of optimal number of repeated mea-
sures) is relatively insensitive to the genotyping platform 
selected.  Table 2  shows the average ELOD ratios for 4 re-
peated measures under three scenarios. Based on the 
ELOD ratio and the condition to maintain the same pow-
er,  � ( m  1 ) F  1  =  � ( m  2 ) F  2 , we can calculate the savings in sam-
ple size when using 4 repeated measures. For example, for 
the first setting when measurement error variance is 11 
(10% total variance) and total heritability is 20%, the sam-
ple size (number of subjects) required when taking 4 mea-
sures per subject is 85% (1/1.17) of the sample size re-
quired when taking 1 measure per subject.

  When the ELOD ratios are available, it is possible to 
calculate the break-event  CR  m  1  ,  m  2  for cost ratio  C  s / C  p  us-
ing (5). For example, when measurement error variance 
is 25 (20% of the total variance) and heritability is 20%, if 
genotyping and recruitment costs per subject are more 
than 6.83 higher than phenotyping costs, taking 4 mea-
sures per subject is more cost-effective than taking 1 
measure per subject. The cost ratio needs to exceed 14.44 
so that taking 4 measures is better than taking 2 measures 
per subject ( table 2 ).

  For the unbalanced design where 20% (or 10%) of sub-
jects with an extreme first measurement are measured 
one more time, the cost ratios can be calculated in a sim-
ilar way because the total number of measures is fixed. 
We denote these two designs as ‘m = 1.2’ and ‘m = 1.1’ re-
spectively. Now we can compare different designs using 
the cost ratio  CR  m  1  ,  m  2 . The results are summarized in  ta-
ble 3 . The cost ratio  CR  1.1,1  is relative large,  CR  1.1,1  =  G  in 
the first row means designs with m = 1.1 are never more 
cost-effective than taking one measure per subject, when 
the measurement error is small. Note that since  CR  2,1.2   !  

Table 1. Power increment by taking repeated measures (scenario 2)

Polygene effect
(% total var.)

No measurement error
or M = G

M = 4 M = 2 M = 1

ELOD power ratio ELOD power ratio ELOD power ratio ELOD power

0.0 (0%)  4.88 0.94 2.71 3.58 0.80 1.99 2.74 0.64 1.52 1.80 0.36
0.2 (12%)  5.91 0.97 2.93 4.16 0.87 2.06 3.11 0.70 1.54 2.02 0.41
0.4 (24%)  7.48 1.00 3.35 5.01 0.94 2.25 3.63 0.80 1.63 2.23 0.48
0.6 (36%) 10.30 1.00 4.17 6.32 0.98 2.56 4.32 0.88 1.75 2.47 0.54

Measurement error variance = 67 (40% of the total trait variance). M = the number of repeated measures. The ratio is the ELOD 
ratio between M measures and 1 measures per subject. Scenario (2): Ten microsatellite markers each with 4 alleles and spaced 10 cM 
apart; the QTL placed in the middle of the markers.

Table 2. Cost-effectiveness analysis for 4 repeated measures vs. 1 
measure

Measurement
error var.
(% total var.)

Heritability
(% total var.)

Ave
ELOD
ratio

Sample
size
savings

CR4,1 CR4,2

11 (10%) 0.20 (18%) 1.17 0.15 16.31 31.20
0.60 (54%) 1.23 0.19 12.04 26.75

25 (20%) 0.20 (16%) 1.38 0.28 6.83 14.44
0.60 (48%) 1.51 0.34 4.84 10.41

67 (40%) 0.20 (12%) 2.01 0.50 1.97 4.55
0.60 (36%) 2.28 0.56 1.34 3.33

150 (60%) 0.20 (8%) 3.07 0.67 0.45 1.33
0.60 (24%) 3.39 0.71 0.25 0.78

CRm1,m2 is defined in (5). CR4,2 is also listed here for compari-
son purpose. When Cs/Cp > CRm1,m2, taking m1 measures is better 
than taking m2 measures per subject. Heritability is defined as 
(�2

mg + �2
pg)/(�2

mg + �2
pg + �2

e) where � 
2
mg + � 

2
pg + � 

2
e = 100 and the 

major gene effect s2
mg is fixed to 20. Average of ELOD ratio is the 

average across three scenarios that give similar results: (1) a high-
ly informative microsatellite marker with 20 alleles and 0 cM be-
tween the marker and the QTL. (2) Ten microsatellite markers 
each with 4 alleles and spaced 10 cM apart; the QTL placed in the 
middle of the markers. (3) Fifty SNPs spaced 2 cM apart; the QTL 
again placed in the middle of the SNPs.
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 CR  1.2,1  and  CR  2,1.1   !   CR  1.1,1 , the unbalanced designs can 
always be outperformed by a balanced design that in-
volves either 2 or 1 measures per subject depending on 
the cost ratio  C  s / C  p . So in terms of cost-effectiveness, bal-
anced designs are always better than unbalanced designs 
no matter what the cost ratio  C  s / C  p . Using the data in 
 table 3 , we can draw a similar contour plot as  figure 2 . This 
plot is presented in  figure 4 . The parameter settings are 
equivalent to  figure 2 . The plot shows the theoretical result 
( fig. 2 ) is consistent with the simulation result ( fig. 4 ).

  Comparing Efficiency between the Full Model and the 
Average Model 
 Using simulation, we next compared the efficiency be-

tween the full model (1) and the average model (2) for 
unbalanced designs. Both models take into account the 

different number of measurements across individuals, 
give valid likelihood functions and control type I error 
rate adequately.

   Figure 5  shows the ELOD ratio of the full model vs. the 
average model. For both unbalanced designs, the full 
model did not provide substantially more efficiency than 
the average model (only in the extreme design, the full 
model increases ELOD by 1% on average across all sce-
narios). The largest increase in ELOD was 9% in settings 
where the measurement error was large and individuals 
with an initial extreme measurement were reassessed.

  Discussion 

 When subjects are measured multiple times, it is im-
portant for a linkage analysis to appropriately take into 
account these repeated measures. In this study, we extend 
the variance components approach to model repeated 
measures in a quantitative trait linkage study. Our mod-
el can explicitly relate the power and cost of different 
sampling designs. We give the general formulas of opti-
mal sample size and number of repeated measures for a 
given power or cost. We show for the case of a balanced 

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cs/Cp

Re
la

ti
ve

 m
ea

su
re

m
en

t 
er

ro
r v

ar
ia

n
ce

m = 1 : m = 1.2
m = 1.2 : m = 2
m = 1 : m = 2
m = 2 : m = 4

m = 2
m = 1

m = 4

EL
O

D
 ra

ti
os

 

Polygene effect

0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.2 0.4 0.6 0 0.2 0.4 0.6

�m
2   = 11 (10%) �m

2   = 150 (60%)

Random
Extreme

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e

  Fig. 4.  Contour plot of optimal number of repeated measures when 
the cost ratio ranges from 0 to 30 and  �   2 m    ranges from 11 to 150 
(10–60% total variance). Trait variance excluding measurement 
error is fixed to 100 (�   2 mg   = 20,              �   2 pg    = 40,  �   2 e    = 40). This setting is 
equivalent to the setting in figure 2. Each line separates two re-
gions in which one design is better than the other. For example, to 
the left of the (blue) dot line, balanced design m = 1 is better than 
the unbalanced design m = 1.2; on the right side of the line, the 
unbalanced design m = 1.2 is better than balanced design m = 1. 
Note that the (blue) dot line is to the right of the (red) dash line, 
thus balanced designs are superior to unbalanced designs in any 
situation. For the region to the right of the grey (green) solid line, 
the optimal design is balanced design m = 4; for the region be-
tween the black solid line and the grey (green) solid line, the opti-
mal design is balanced design m = 2; for the region to the left of 
the black solid line, the optimal design is balanced design m = 1. 

  Fig. 5.  ELOD ratio of full model vs. average model for unbalanced 
design. Setting is scenario 2. Left 4 pairs of bars are for  �   2 m    = 11 
(10% of total variance). Right 4 pairs of bars are for  �   2 m    = 150 (60% 
of total variance). Random design: the number of repeated mea-
sures follows an exponential distribution. Extreme design: 20% 
subjects with extreme first measure have an additional measure-
ment.                                     
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design where the same number of measurements is taken 
for each subject, a standard linkage test that takes the av-
erage of measures as the trait of interest is identical to a 
linkage test based on an appropriate extension of the vari-
ance components model.

  In our model, the covariance between repeated mea-
sures of the same subject follows the compound symme-
try structure. This model is valid when measurement 
 errors within a subject are either independent or else 
equally correlated. It is one of the most commonly used 
covariance structures in the repeated measures litera-
ture. When necessary it should be possible to refine our 
model to include dominance effects, twin environment 
or other variance-covariance components or even to in-
corporate covariate effects into the variance-covariance 
matrix. In particular, time effects can be introduced into 
the variance-covariance structure to allow for longitudi-
nal changes in variance components  [3] .

  Through both analytical calculation and simulation, 
we find that repeated measures provide substantial pow-
er improvements across genetic models. The proportion-
al increase in expected LOD score (ELOD Ratio) depends 
mostly on measurement error and total heritability but 
not much on marker map or number of alleles per mark-
er. This suggests that the optimal design (in terms of op-
timal number of repeated measures) will be similar for a 
range of genotyping strategies (provided they are similar 
in cost). We give contour plots to help investigators decide 
on the optimal number of repeated measures for different 
levels of measurement errors and ratios of genotyping, 
subject recruitment and phenotyping costs. The R code 
to help determine the optimal number of repeated mea-
sures is available from our website.

  Precise trade-offs can be obtained by examining  fig-
ure 2  and the R package. Still, our results allow us to make 
some general recommendations. When measurement er-
ror is high, accounting for  � 50% of the trait variance, it 
is typically cost effective to collect 2 or more measures per 
subject when the ratio of phenotyping to genotyping 
costs per subject is  ! 16 fold. If genotyping is carried out 
using a commercially available SNP array that typically 
costs 100–200 USD per subject, it will almost always be 
worthwhile to phenotype each individual multiple times, 
given that most phenotyping assays cost  ! 1600–3200 
USD per measurement. When measurement error is 
small, accounting for  � 10% of the trait variance, it is only 
cost effective to collect 2 or more measures per subject 
when phenotyping is relatively inexpensive, costing no 
more than 0.154 times the cost of genotyping. With the 
same genotyping costs as above, this would correspond 
to 15–30 USD per measurement and would only be worth-
while for the most inexpensive phenotypes (such as those 
that rely on mail-in questionnaires or very simple trait 
measurements). In other situations, it will be more effi-
cient to collect additional subjects.

  For unbalanced designs, a standard linkage test that 
takes the average measurement as the trait of interest and 
ignores the number of measures is not valid. A model that 
uses the average measurement as the trait but takes into 
account the different number of measures for each sub-
ject, i.e. model (2), is a valid alternative to the full model. 
The advantage of model (2) is that it is less computation-
ally intensive and, typically, only slightly less powerful 
than the full model. We implemented both the average 
model and the full model in the MERLIN package  [9, 23] . 
We also assessed the effect of ignoring the imbalance and 

Table 3. Cost ratios for the comparison between different designs

Measurement
error var.

Heritability
(% total var.)

CR4,2 CR2,1 CR2,1.2 CR2,1.1 CR1.2,1 CR1.1,1

11 (10%) 0.20 (18%) 31.20 8.38 7.16 7.34 19.00 G

0.60 (54%) 26.75 5.67 5.26 5.22 7.57 14.00
25 (20%) 0.20 (16%) 14.44 3.29 2.77 2.97 6.50 9.00

0.60 (48%) 10.41 2.30 1.91 2.00 4.45 9.00
67 (40%) 0.20 (12%) 4.55 0.85 0.53 0.65 2.75 5.00

0.60 (36%) 3.33 0.52 0.36 0.38 1.07 2.00
150 (60%) 0.20 (8%) 1.33 0.09 0 0 0.76 1.31

0.60 (24%) 0.78 0.03 0 0 0.40 0.43

CRm1,m2 is defined in (5). When Cs/Cp > CRm1,m2, taking m1 measures is better than taking m2 measures per 
subject. Heritability is defined as (� 

2
mg + � 

2
pg)/(� 

2
mg + � 

2
pg + � 

2
e).
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taking the average as a single trait. Online suppl. table 2 
shows simulations where a random half of subjects were 
measured 2, 4, or 10 times while the other half were mea-
sured only once. The results suggest that ignoring imbal-
ance could lead to approximately correct Type I error but 
could lose power (at p  !  0.001) by 2–5% or decrease in 
ELOD by 3–15%.

  In our simulations, parental genotypes were used to 
help estimate IBD sharing between pairs of relatives. We 
also investigated the effect of parental phenotypes on 
power. Online suppl. fig. 1 shows the expected LOD 
scores with and without using parental phenotypes at a 
fully informative marker under the same scenario of  fig-
ure 1 . For a simulated trait with relatively low heritability, 
the additional measures from parents only slightly in-
crease the expected LOD scores, suggesting that pheno-
typing parents is unlikely to be cost effective. For highly 
heritable traits, parental phenotypes do substantially in-
crease the expected LOD scores especially for larger num-
ber of repeated measures. In this case, there will be a 
trade-off between phenotyping the parents and collect-
ing more offspring genotypes and phenotypes.

  In cases of non-normality of the trait distribution and 
selected sampling, robust statistics such as score statistics 
 [16, 17]  or regression-based statistics  [18]  can help to ad-
equately control the type I error and increase power. In-
tensive simulations  [17, 18]  have shown that the regres-
sion-based model implemented in MERLIN-REGRESS 
 [18]  is robust to violations of normality, selected sampling 
and population parameter misspecification while achiev-
ing high power. Nash et al. 2004 discussed the treatment 
of average repeated measures in the regression-based 
model  [20] . We take another approach which leads to 
simpler formulation and hence easier implementation of 
the software. We show that the regression-based model 
can be extended to incorporate individual repeated mea-
sures as well as average measures [appendix B] and this 
alternative is implemented in MERLIN-REGRESS  [18] .
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  Web Resource 

 MERLIN and MERLIN-REGRESS: http://www.sph.umich.
edu/csg/abecasis/Merlin/

  R package for determining the optimal number of repeated 
measures: http://www.sph.umich.edu/csg/liang/RepeatedMea-
sures/

  Appendix A: Equivalence between Full Model and 

Average Measurement Model for Balanced Number 

of Measurements 

 When each subject is measured the same number  M  of times, 
it can be shown that the full model (1) and average measurement 
model (2 and 3) are equivalent.

  Let vector  Y  j  represent all measurements for subject j. In full 
model (1), the variance for vector  Y  j  is  Var ( Y  j ) = ( �   2 mg    +  �   2 pg    + 
 �   2 e   ) 11  �  +  �   2 m     I   and the covariance between  Y  j  for subject j and  Y  k  
for subject k is  Cov ( Y  j , Y  k ) = ( �  jk  �   2 mg    + 2  �   jk  �   2 pg   ) 11  � , where vector  1  
consists of all 1’s and  I  is the identity matrix. 

  We first apply a linear transformation  T  on multiple measure-
ments  Y  j 

   Y  *   j  =  T ( Y  j  1 , Y  j  2 , ...,  Y  jM ) �                                                                   (A1)

  where 
 1 1 1 1

1 1 0 0
2 2

.
10 0 0
2
1 10 0
2 2

M M M M

T

  Thus the covariance matrix for the transformed vector  Y  *   j  is

   Var (  Y  *   j     ) =  T  Var ( Y  j ) T �  
                 = ( �   2 mg    +  �   2 pg    +  �   2 e ) T11  �  T  �  +  �   2 m    TT  �                      (A2)

   Cov (  Y  *   j    ,  Y  *   k    ) =  T  Cov ( Y  j , Y  k ) T �  
                       = ( �  jk  �   2 mg    + 2  �  jk �   2 pg   ) T11  �  T  �                               (A3)

  Simple algebra gives 
 

1 1 1 1

1 0 1/ 0
,0 0 0M M M M

M
T11 Τ TΤ A� � �

  where A is some ( M  – 1) by ( M  – 1) matrix. Let Z j  and  Y  *  j   m  denote 
the first and the rest of the elements in the transformed vector 
 Y  *  j     respectively. Then, 

 

1
/ ,

M

j jm
m

Z Y M

  and 
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jm j m

jm

Y Y
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  for  m  = 2, …,  M . Covariances (A2) and (A3) imply 

    Var ( Z  j ) =  �   2 mg    +  �   2 Pg    + ( �   2 e    +  �   2 m    / M )
   Cov ( Z  j ,  Z  k ) =  �  jk  �   2 mg    + 2  �   jk  �   2 pg   , for  j   0   k 
   Var (  Y  *   j   m ) =  �   2 m    /2, for  m  = 2, ...,  M 
   Cov (  Y  *   j   m ,   Y  *   j     (  m   + 1) ) =  �   2 m    /4, for  m  = 2, ...,  M  – 1                    (A4)

  and all other covariances are 0. Thus, the full model (1) implies 
model (A4). The reverse is also true since the transformation (A1) 
is not singular. Now we assume in the average model (3),  �   2 e   *   =  
�   2 e    +  �   2 m    / M . By comparing model (A4) and model (3), we can see 
model (A4) implies model (3).  

 Let   �   Z  denote the variance-covariance matrix of vector  z  = 
( Z  1 , ...,  Z  J ) � , and   � *  denotes the variance-covariance matrix of 
 y *   = ( y  *  2  , ...,  y *  M    ) � , where y * m   = ( Y  *  1 m   , ...,  Y  *  J m   ) �  for  m  = 2, …,  M . Mod-
el (A4) shows vector z and  y * m    are orthogonal, indicating the vari-
ance-covariance matrix of ( z ,  y  * ) �  with form 

0
.0

Z




*

 Thus, the likelihood of a family is 
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  The first part of the above likelihood is exactly the likelihood in 
model (3). Since the second part in the last expression of the likeli-
hood only contains information about  �   2 m    and does not carry any 
information about  �   2 m  g ,  �   2 p  g  and �   2 e  *    , the maximum likelihood 
estimates about ( �   2 m  g ,  �   2 p  g ,  �   2 e   ) in the average measurement mod-
el are identical to those for ( �   2 m  g ,  �   2 p  g ,  �   2 e   *    ) in the full model. There-
fore, for balanced data, the average of the repeated measurements 
can be treated as the actual trait, and the standard variance com-
ponents analysis is the equivalent to the full model. When the 
number of measurements is not balanced, the equivalence between 
the above two models does not hold anymore and the full model 
uses more information than the average measurement model.

  Appendix B: Extension of the Regression Model 

for Linkage Analysis in Sham et al. 2002  [18]  to 

Accommodate Repeated Measures 

 To incorporate repeated measures into the regression model, 
we only need to re-specify the form for the expectation and cova-
riance that involves the squared sum S and squared difference D, 
other terms in the model will be identical to Sham et al. 2002. In 
fact, the regression model can be extended to model individual 
measures as well as the average measures and the relative perfor-
mance of models using all available measurements, the average 
measurement and the count of measurements for each subject, or 
just the average measurement is analogous to the performance of 
formulas (1)–(3) in the variance component model.

  Let  c  be the within-subject correlation 
2 2 2

2 2 2 2
mg pg e

mg pg e m

� � �

� � � �

 and  H  2  be the total heritability 
 2 2

2 2 2 2 .mg pg

mg pg e m

� �

� � � �

  Assuming the full model (1), all pairs of individual measures stan-
dardized by their population mean  �  and variance  �  2  =  �   2 m  g  + 
 �   2 p  g  +  �   2 e    +  �   2 m    are considered. The vector of squared sums is 

 
1 1 2 2

1 1 2 2

2

,
i j i j

i j i j

Y Y
S

� �

� �

  and similarly the vector of squared differences is 
 

1 1 2 2

1 1 2 2

2

, .i j i j
i j i j

Y Y
D

� �

� �

  In the expectation and covariance of the squared sums S and 
squared differences D, only the form of correlation needs to be 
changed and it is equal to: 

 
1 1 2 2

1 1 2 2
1 2

1 2
, 2

if
cov ,

2 H otherwise
i j i j

i j i j
i i

c i iY Y
r

� �
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  The parameter  c  as well as the population mean,  � , variance,  �  2 , 
and total heritability  H  2  will need to be specified by the user. 

 The remaining terms that need to be considered are the cova-
riance between S, D and  �  ̂  : {Cov 1 ( S  i  1  j  1  ,  i  2  j  2 ,   � ̂     k  1  l  1  ,  k  2  l  2 )} and 
{Cov 1 ( D  i  1  j  1  ,  i  2  j  2 ,   � ̂     k  1  l  1  ,  k  2  l  2 )}. For  i  1   0   i  2  and  k  1   0   k  2 , these terms remain 
unchanged. For  k  1  =  k  2 ,   � ̂     k  1  l  1  ,  k  2  l  2  = 1 so the covariance is 0. For 
 i  1  =  i  2  and  k  1   0   k  2 , since the joint distribution of ( Y  i  1  j  1 , Y  i  2  j  2 ) does not 
involve  � , the covariance is again 0. This suggests that we only 
need to include the pair of measures that involve different sub-
jects; greatly reducing the dimension of mean vectors and covari-
ance matrixes. More importantly, all formulas in Sham et al. 2002 
can be directly applied if we only include pairs of measures that 
are from different subjects.

  Assuming model (2) for average measures under unbalanced 
designs, the variance for each average measure will be different. 
Unlike the treatment in  [20] , we propose to standardize the aver-
age measures {  Y   i } by the population mean  �  and their own vari-
ances { �   2 i    =  �   2 m  g  +  �   2 p  g  +  �   2 e    +  �   2 m    / m  i  =  c  �  2  + (1 –  c ) �  2 / m  i } so that 
they are multivariate normal with mean 0 and variance 1 and re-
sults in Appendix A of Sham et al. 2002 can apply. Hence the for-
mulae for covariances of the squared sums S and squared differ-
ences D remain unchanged. Only the correlation between a pair 
of standardized average measures needs to be changed to: 

2
2cov , 2 Hji

ij ij
i j i j

YY
r

�� �
�

� � � �

 For covariance between S, D and  �̂    , following a similar derivation 
to Drigalenko 1998  [19] , we have: 
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  and 
 

1
1

2 cov ,
cov , ij kl

ij kl
i j

ˆ ˆQ
ˆD

� �
�

� �

  Other equations will be identical to Sham et al. 2002. 

 Analogous to model (3) for average measures with balanced 
designs, the average measures { Y  i ,  i  = 1 ...  n } can be treated as an 
actual trait and standardized by the population mean  �  and the 
variance  �   2 m  g  +  �   2 p  g  +  �   2 e    +  �   2 m    / m  =  c  �  2  + (1 –  c ) �  2 / m . So the mod-
el in Sham et al. 2002 can apply. 
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