


- 1 Supplementary Figure 1. Expected LOD score for 1000 nuclear families with 4 offspring with and without using parental phenotypes,
- 2 where $\sigma_{mg}^2 = 0.2$ (10% total variance), $\sigma_{pg}^2 = 0,...,0.8$ (0-40% total variance), $\sigma_e^2 = 0.8 \sigma_{pg}^2$ and $\sigma_m^2 = \sigma_{mg}^2 + \sigma_{pg}^2 + \sigma_e^2 = 1$ (50% total variance). m = 0.2
- 3 number of repeated measures.

4 **Supplementary Table 1**. ELOD ratios across different pedigree structures

	2sibs		4sibs		6sibs		cousin	
m	ELOD	ratio	ELOD	ratio	ELOD	ratio	ELOD	ratio
1	0.841		2.841		5.065		3.738	
2	1.367	1.626	4.824	1.698	8.530	1.684	6.029	1.613
4	1.841	2.190	6.566	2.311	11.847	2.339	8.119	2.172
8	2.206	2.624	7.977	2.808	14.274	2.818	9.731	2.603

- 5 The ratio is comparing the ELOD for m=2, 4, 8 with m=1. We simulated nuclear families with 2, 4, 6 offspring, and a family structure with 2
- 6 2nd-generation offspring and each has three 3rd generation offspring (the "cousin" scenario). The total number of individuals in all scenarios was
- set to the same so as to facilitate power comparison between different family structures. We fixed $\sigma_{mg}^2 + \sigma_{pg}^2 + \sigma_e^2 = 100$, $\sigma_{pg}^2 = 40$ (24% total
- 8 variance), $\sigma_m^2 = 67$ (40% total variance) and simulated a fully informative marker with $\sigma_{mg}^2 = 20$ (12% total variance).

1 **Supplementary Table 2**. Power lost and Type I error when ignoring imbalance

			Type I error					
	ELOD				% pvalue < 0.00	% pvalue < 0.05		
m	Correct	Ignores the	Ratio	Correct	Ignore the	Difference	Correct	Ignore the
	average	number of	of	average	number of		average	number of
	model	measurements	ELOD	model	measurements		model	measurements
2	3.76	3.64	1.03	82.5%	80.6%	1.9%	4.8%	4.8%
4	4.54	4.16	1.09	90.8%	87.5%	3.4%	4.4%	4.7%
10	5.17	4.49	1.15	95.0%	90.5%	4.5%	3.7%	4.6%

- 2 Half of the samples are randomly selected to take a specific number of repeated measures (m=2, 4 or 10), other samples will be measured only
- one time. Results are based on 2000 simulations. We fixed $\sigma_{mg}^2 + \sigma_{pg}^2 + \sigma_e^2 = 100$, $\sigma_{pg}^2 = 40$ (24% total variance) and $\sigma_m^2 = 67$ (40% total
- 4 variance). In the simulation for power, at a fully informative marker, $\sigma_{mg}^2 = 20$ (12% total variance); in the simulation for type I error, $\sigma_{mg}^2 = 0$.