BamIndex.cpp

00001 /*
00002  *  Copyright (C) 2010  Regents of the University of Michigan
00003  *
00004  *   This program is free software: you can redistribute it and/or modify
00005  *   it under the terms of the GNU General Public License as published by
00006  *   the Free Software Foundation, either version 3 of the License, or
00007  *   (at your option) any later version.
00008  *
00009  *   This program is distributed in the hope that it will be useful,
00010  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
00011  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00012  *   GNU General Public License for more details.
00013  *
00014  *   You should have received a copy of the GNU General Public License
00015  *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
00016  */
00017 
00018 #include "BamIndex.h"
00019 #include <iomanip>
00020 
00021 Chunk SortedChunkList::pop()
00022 {
00023     Chunk newChunk = chunkList.begin()->second;
00024     chunkList.erase(chunkList.begin());
00025     return(newChunk);
00026 }
00027 
00028 
00029 bool SortedChunkList::insert(const Chunk& chunkToInsert)
00030 {
00031     std::pair<std::map<uint64_t, Chunk>::iterator, bool> insertRes;
00032     // Insert the passed in chunk.
00033     insertRes = 
00034         chunkList.insert(std::pair<uint64_t, Chunk>(chunkToInsert.chunk_beg,
00035                                                     chunkToInsert));
00036 
00037     if(!insertRes.second)
00038     {
00039         // Failed to insert the chunk.
00040         std::cerr << "Failed to insert into the SortedChunkList.\n";
00041         std::cerr << "\tpreviously found chunk:\tbeg = " << std::hex
00042                   << insertRes.first->second.chunk_beg 
00043                   << "\tend = "
00044                   << insertRes.first->second.chunk_end
00045                   << "\nnew chunk:\tbeg = " << std::hex
00046                   << chunkToInsert.chunk_beg 
00047                   << "\tend = "
00048                   << chunkToInsert.chunk_end
00049                   << std::endl;
00050     }
00051     // return the result that comes from insertRes.
00052     return(insertRes.second);
00053 }
00054 
00055 void SortedChunkList::clear()
00056 {
00057     chunkList.clear();
00058 }
00059 
00060 bool SortedChunkList::empty()
00061 {
00062     return(chunkList.empty());
00063 }
00064 
00065 
00066 // Merge overlapping chunks found in this list.
00067 bool SortedChunkList::mergeOverlapping()
00068 {
00069     // Start at the beginning of the list and iterate through.
00070     std::map<uint64_t, Chunk>::iterator currentPos = chunkList.begin();
00071     std::map<uint64_t, Chunk>::iterator nextPos = chunkList.begin();
00072     if(nextPos != chunkList.end())
00073     {
00074         ++nextPos;
00075     }
00076     
00077     // Loop until the end is reached.
00078     while(nextPos != chunkList.end())
00079     {
00080         // If the next chunk is completely contained within the current 
00081         // chunk (its end is less than the current chunk's end), 
00082         // delete it since its position is already covered.
00083         if(nextPos->second.chunk_end < currentPos->second.chunk_end)
00084         {
00085             chunkList.erase(nextPos);
00086             nextPos = currentPos;
00087             ++nextPos;
00088             continue;
00089         }
00090         
00091         // If the next chunk's start position's BGZF block is less than or
00092         // equal to the BGZF block of the current chunk's end position,
00093         // combine the two chunks into the current chunk.
00094         if((nextPos->second.chunk_beg >> 16) <= 
00095            (currentPos->second.chunk_end >> 16))
00096         {
00097             currentPos->second.chunk_end = nextPos->second.chunk_end;
00098             // nextPos has now been included in the current pos, so
00099             // remove it.
00100             chunkList.erase(nextPos);
00101             nextPos = currentPos;
00102             ++nextPos;
00103             continue;
00104         }
00105         else
00106         {
00107             // Nothing to combine.  So try combining at the next 
00108             currentPos = nextPos;
00109             ++nextPos;
00110         }
00111     }
00112     return(true);
00113 }
00114 
00115 
00116 BamIndex::BamIndex()
00117 {
00118     resetIndex();
00119 }
00120 
00121 
00122 
00123 BamIndex::~BamIndex()
00124 {
00125 }
00126 
00127 
00128 // Reset the member data for a new index file.
00129 void BamIndex::resetIndex()
00130 {
00131     n_ref = 0;
00132     maxOverallOffset = 0;
00133 
00134     // Clear the references.
00135     myRefs.clear();
00136 }
00137 
00138 
00139 // Read & parse the specified index file.
00140 SamStatus::Status BamIndex::readIndex(const char* filename)
00141 {
00142     // Reset the index from anything that may previously be set.
00143     resetIndex();
00144 
00145     IFILE indexFile = ifopen(filename, "rb");
00146 
00147     // Failed to opren the index file.
00148     if(indexFile == NULL)
00149     {
00150         return(SamStatus::FAIL_IO);
00151     }
00152 
00153     // generate the bam index structure.
00154 
00155     // Read the magic string.
00156     char magic[4];
00157     if(ifread(indexFile, magic, 4) != 4)
00158     {
00159         // Failed to read the magic
00160         return(SamStatus::FAIL_IO);
00161     }
00162 
00163     // If this is not an index file, set num references to 0. 
00164     if (magic[0] != 'B' || magic[1] != 'A' || magic[2] != 'I' || magic[3] != 1)
00165     {
00166         // Not a BAM Index file.
00167         return(SamStatus::FAIL_PARSE);
00168     }
00169 
00170     // It is a bam index file.
00171     // Read the number of reference sequences.
00172     if(ifread(indexFile, &n_ref, 4) != 4)
00173     {
00174         // Failed to read.
00175         return(SamStatus::FAIL_IO);
00176     }
00177 
00178     // Size the references.
00179     myRefs.resize(n_ref);
00180 
00181     for(int refIndex = 0; refIndex < n_ref; refIndex++)
00182     {
00183         // Read each reference.
00184         Reference* ref = &(myRefs[refIndex]);
00185         
00186         // Resize the bins so they can be indexed by bin number.
00187         ref->bins.resize(MAX_NUM_BINS + 1);
00188         
00189         // Read the number of bins.
00190         if(ifread(indexFile, &(ref->n_bin), 4) != 4)
00191         {
00192             // Failed to read the number of bins.
00193             // Return failure.
00194             return(SamStatus::FAIL_PARSE);
00195         }
00196 
00197         // Read each bin.
00198         for(int binIndex = 0; binIndex < ref->n_bin; binIndex++)
00199         {
00200             uint32_t binNumber;
00201 
00202             // Read in the bin number.
00203             if(ifread(indexFile, &(binNumber), 4) != 4)
00204             {
00205                 // Failed to read the bin number.
00206                 // Return failure.
00207                 return(SamStatus::FAIL_IO);
00208             }
00209 
00210             // Add the bin to the reference and get the
00211             // pointer back so the values can be set in it.
00212             Bin* binPtr = &(ref->bins[binNumber]);
00213             binPtr->bin = binNumber;
00214          
00215             // Read in the number of chunks.
00216             if(ifread(indexFile, &(binPtr->n_chunk), 4) != 4)
00217             {
00218                 // Failed to read number of chunks.
00219                 // Return failure.
00220                 return(SamStatus::FAIL_IO);
00221             }
00222 
00223             // Read in the chunks.
00224             // Allocate space for the chunks.
00225             uint32_t sizeOfChunkList = binPtr->n_chunk * sizeof(Chunk);
00226             binPtr->chunks = (Chunk*)malloc(sizeOfChunkList);
00227             if(ifread(indexFile, binPtr->chunks, sizeOfChunkList) != sizeOfChunkList)
00228             {
00229                 // Failed to read the chunks.
00230                 // Return failure.
00231                 return(SamStatus::FAIL_IO);
00232             }
00233 
00234             // Determine the min/max for this bin if it is not the max bin.
00235             if(binPtr->bin != MAX_NUM_BINS)
00236             {
00237                 for(int i = 0; i < binPtr->n_chunk; i++)
00238                 {
00239                     if(binPtr->chunks[i].chunk_beg < ref->minChunkOffset)
00240                     {
00241                         ref->minChunkOffset = binPtr->chunks[i].chunk_beg;
00242                     }
00243                     if(binPtr->chunks[i].chunk_end > ref->maxChunkOffset)
00244                     {
00245                         ref->maxChunkOffset = binPtr->chunks[i].chunk_end;
00246                     }
00247                     if(binPtr->chunks[i].chunk_end > maxOverallOffset)
00248                     {
00249                         maxOverallOffset = binPtr->chunks[i].chunk_end;
00250                     }
00251                 }
00252             }
00253             else
00254             {
00255                 // Mapped/unmapped are the last chunk of the
00256                 // MAX BIN
00257                 ref->n_mapped = binPtr->chunks[binPtr->n_chunk - 1].chunk_beg;
00258                 ref->n_unmapped = binPtr->chunks[binPtr->n_chunk - 1].chunk_end;
00259             }
00260         }
00261 
00262         // Read the number of intervals.
00263         if(ifread(indexFile, &(ref->n_intv), 4) != 4)
00264         {
00265             // Failed to read, set to 0.
00266             ref->n_intv = 0;
00267             // Return failure.
00268             return(SamStatus::FAIL_IO);
00269         }
00270 
00271         // Allocate space for the intervals and read them.
00272         uint32_t linearIndexSize = ref->n_intv * sizeof(uint64_t);
00273         ref->ioffsets = (uint64_t*)malloc(linearIndexSize);
00274         if(ifread(indexFile, ref->ioffsets, linearIndexSize) != linearIndexSize)
00275         {
00276             // Failed to read the linear index.
00277             // Return failure.
00278             return(SamStatus::FAIL_IO);
00279         }
00280     }
00281 
00282     // Successfully read teh bam index file.
00283     return(SamStatus::SUCCESS);
00284 }
00285 
00286 
00287 // Get the chunks for the specified reference id and start/end 0-based
00288 // coordinates.
00289 bool BamIndex::getChunksForRegion(int32_t refID, int32_t start, int32_t end, 
00290                                   SortedChunkList& chunkList)
00291 {
00292     chunkList.clear();
00293 
00294     // If start is >= to end, there will be no sections, return no
00295     // regions.
00296     if((start >= end) && (end != -1))
00297     {
00298         std::cerr << "Warning, requesting region where start <= end, so "
00299                   << "no values will be returned.\n";
00300         return(false);
00301     }
00302 
00303     // Handle REF_ID_UNMAPPED.  This uses a default chunk which covers
00304     // from the max offset to the end of the file.
00305     if(refID == REF_ID_UNMAPPED)
00306     {
00307         Chunk refChunk;
00308         // The start of the unmapped region is the max offset found
00309         // in the index file.
00310         refChunk.chunk_beg = getMaxOffset();
00311         // The end of the unmapped region is the end of the file, so
00312         // set chunk end to the max value.
00313         refChunk.chunk_end = Chunk::MAX_CHUNK_VALUE;
00314         return(chunkList.insert(refChunk));
00315     }
00316 
00317     if((refID < 0) || (refID >= n_ref))
00318     {
00319         // The specified refID is out of range, return false.
00320         return(false);
00321     }
00322 
00323     const Reference* ref = &(myRefs[refID]);
00324 
00325     // Handle where start/end are defaults.    
00326     if(start == -1)
00327     {
00328         if(end == -1)
00329         {
00330             // This is whole chromosome, so take a shortcut.
00331             if(ref->maxChunkOffset == 0)
00332             {
00333                 // No chunks for this region, but this is not an error.
00334                 return(true);
00335             }
00336             Chunk refChunk;
00337             refChunk.chunk_beg = ref->minChunkOffset;
00338             refChunk.chunk_end = ref->maxChunkOffset;
00339             return(chunkList.insert(refChunk));
00340         }
00341         else
00342         {
00343             start = 0;
00344         }
00345     }
00346     if(end == -1)
00347     {
00348         // MAX_POSITION is inclusive, but end is exclusive, so add 1.
00349         end = MAX_POSITION + 1;
00350     }
00351 
00352     // Determine the minimum offset for the given start position.  This
00353     // is done by using the linear index for the specified start position.
00354     uint64_t minOffset = getMinOffsetFromLinearIndex(refID, start);
00355 
00356     uint16_t binInRangeList[MAX_NUM_BINS + 1];
00357     
00358     int numBins = getBinsForRegion(start, end, binInRangeList);
00359 
00360     // loop through the bins in the range and get the chunks.
00361     for(int i = 0; i < numBins; ++i)
00362     {
00363         int binNum = binInRangeList[i];
00364         const Bin* bin = &(ref->bins[binNum]);
00365 
00366         // Add each chunk in the bin to the map.
00367         for(int chunkIndex = 0; chunkIndex < bin->n_chunk; chunkIndex++)
00368         {
00369             // If the end of the chunk is less than the minimum offset
00370             // for the 16K block that starts our region, then no
00371             // records in this chunk will cross our region, so do
00372             // not add it to the chunks we need to use.
00373             if(bin->chunks[chunkIndex].chunk_end < minOffset)
00374             {
00375                 continue;
00376             }
00377             // Add the chunk to the map.
00378             if(!chunkList.insert(bin->chunks[chunkIndex]))
00379             {
00380                 // Failed to add to the map, return false.
00381                 return(false);
00382             }
00383         }
00384     }
00385 
00386     // Now that all chunks have been added to the list,
00387     // handle overlapping chunks.
00388     return(chunkList.mergeOverlapping());
00389 }
00390 
00391 
00392 // Get the max offset.
00393 uint64_t BamIndex::getMaxOffset() const
00394 {
00395     return(maxOverallOffset);
00396 }
00397 
00398 // Get the min & max file offsets for the reference ID.
00399 bool BamIndex::getReferenceMinMax(int32_t refID,
00400                                   uint64_t& minOffset,
00401                                   uint64_t& maxOffset) const
00402 {
00403     if((refID < 0) || (refID >= (int32_t)myRefs.size()))
00404     {
00405         // Reference ID is out of range for this index file.
00406         return(false);
00407     }
00408 
00409     // Get this reference.
00410     minOffset = myRefs[refID].minChunkOffset;
00411     maxOffset = myRefs[refID].maxChunkOffset;
00412     return(true);
00413 }
00414 
00415     
00416 // Get the number of references in this index.
00417 int32_t BamIndex::getNumRefs() const
00418 {
00419     // Return the number of references.
00420     return(myRefs.size());
00421 }
00422 
00423 
00424 // Print the bam index.
00425 void BamIndex::printIndex(int32_t refID, bool summary)
00426 {
00427     std::cout << "BAM Index: " << std::endl;
00428     std::cout << "# Reference Sequences: " << n_ref << std::endl;
00429 
00430     unsigned int startRef = 0;
00431     unsigned int endRef = myRefs.size() - 1;
00432     std::vector<Reference> refsToProcess;
00433     if(refID != -1)
00434     {
00435         // Set start and end ref to the specified reference id.
00436         startRef = refID;
00437         endRef = refID;
00438     }
00439 
00440     // Print out the information for each bin.
00441     for(unsigned int i = startRef; i <= endRef; ++i)
00442     {
00443         std::cout << std::dec 
00444                   << "\tReference ID: " << std::setw(4) << i
00445                   << ";  #Bins: "<< std::setw(6) << myRefs[i].n_bin 
00446                   << ";  #Linear Index Entries: " 
00447                   << std::setw(6) << myRefs[i].n_intv
00448                   << ";  Min Chunk Offset: " 
00449                   << std::setw(18) << std::hex << std::showbase << myRefs[i].minChunkOffset
00450                   << ";  Max Chunk Offset: "
00451                   << std::setw(18) << myRefs[i].maxChunkOffset
00452                   << std::dec;
00453         // Print the mapped/unmapped if set.
00454         if(myRefs[i].n_mapped != Reference::UNKNOWN_MAP_INFO)
00455         {            
00456             std::cout << ";  " << myRefs[i].n_mapped << " Mapped Reads";
00457         }
00458         if(myRefs[i].n_mapped != Reference::UNKNOWN_MAP_INFO)
00459         {            
00460             std::cout << ";  " << myRefs[i].n_unmapped << " Unmapped Reads";
00461         }
00462         std::cout << std::endl;
00463         
00464         // Only print more details if not summary.
00465         if(!summary)
00466         {
00467             std::vector<Bin>::iterator binIter;
00468             for(binIter = myRefs[i].bins.begin(); 
00469                 binIter != myRefs[i].bins.end();
00470                 ++binIter)
00471             {
00472                 Bin* binPtr = &(*binIter);
00473                 if(binPtr->bin == Bin::NOT_USED_BIN)
00474                 {
00475                     // This bin is not used, continue.
00476                     continue;
00477                 }
00478                 // Print the bin info.
00479                 std::cout << "\t\t\tBin Name: " << binPtr->bin << std::endl;
00480                 std::cout << "\t\t\t# Chunks: " << binPtr->n_chunk << std::endl;
00481                 std::cout << std::hex << std::showbase;
00482 
00483                 for(int chunkIndex = 0; chunkIndex < binPtr->n_chunk;
00484                     ++chunkIndex)
00485                 {
00486                     // If this is the last chunk of the MAX_NUM_BINS - it
00487                     // contains a mapped/unmapped count rather than the regular
00488                     // chunk addresses.
00489                     if((binPtr->bin != MAX_NUM_BINS) ||
00490                        (chunkIndex != (binPtr->n_chunk - 1)))
00491                     {
00492                         std::cout << "\t\t\t\tchunk_beg: "
00493                                   << binPtr->chunks[chunkIndex].chunk_beg 
00494                                   << std::endl;
00495                         std::cout << "\t\t\t\tchunk_end: "
00496                                   << binPtr->chunks[chunkIndex].chunk_end
00497                                   << std::endl;
00498                     }
00499                 }
00500             }
00501             std::cout << std::dec;
00502             
00503             // Print the linear index.
00504             for(int linearIndex = 0; linearIndex < myRefs[i].n_intv;
00505                 ++linearIndex)
00506             {
00507                 if(myRefs[i].ioffsets[linearIndex] != 0)
00508                 {
00509                     std::cout << "\t\t\tLinearIndex["
00510                               << std::dec << linearIndex << "] Offset: " 
00511                               << std::hex << myRefs[i].ioffsets[linearIndex]
00512                               << std::endl;
00513                 }
00514             }
00515         }
00516     }
00517 }
00518 
00519 
00520 // Returns the minimum offset of records that cross the 16K block that
00521 // contains the specified position for the given reference id.
00522 // The basic logic is from samtools reg2bins and the samtools format specification pdf.
00523 int BamIndex::getBinsForRegion(uint32_t start, uint32_t end, uint16_t binList[MAX_NUM_BINS])
00524 {
00525     uint32_t binListIndex = 0, binNum;
00526     --end;
00527 
00528         // Check if beg/end go too high, set to max position.
00529         if(start > MAX_POSITION)
00530         {
00531             start = MAX_POSITION;
00532         }
00533         if(end > MAX_POSITION)
00534         {
00535             end = MAX_POSITION;
00536         }
00537 
00538     binList[binListIndex++] = 0;
00539     for (binNum =    1 + (start>>26); binNum <=    1 + (end>>26); ++binNum) 
00540             binList[binListIndex++] = binNum;
00541     for (binNum =    9 + (start>>23); binNum <=    9 + (end>>23); ++binNum) 
00542             binList[binListIndex++] = binNum;
00543     for (binNum =   73 + (start>>20); binNum <=   73 + (end>>20); ++binNum)
00544             binList[binListIndex++] = binNum;
00545     for (binNum =  585 + (start>>17); binNum <=  585 + (end>>17); ++binNum)
00546             binList[binListIndex++] = binNum;
00547     for (binNum = 4681 + (start>>14); binNum <= 4681 + (end>>14); ++binNum)
00548             binList[binListIndex++] = binNum;
00549 
00550         // binListIndex contains the number of items added to the list.
00551     return binListIndex;
00552 }
00553 
00554 
00555 // Returns the minimum offset of records that cross the 16K block that
00556 // contains the specified position for the given reference id.
00557 uint64_t BamIndex::getMinOffsetFromLinearIndex(int32_t refID, uint32_t position)
00558 {
00559     int32_t linearIndex = position >> LINEAR_INDEX_SHIFT;
00560     uint64_t minOffset = 0;
00561     // Check to see if the position is out of range of the linear index.
00562     int32_t linearOffsetSize = myRefs[refID].n_intv;
00563 
00564     // If there are no entries in the linear index, return 0.
00565     // Or if the linear index is not large enough to include
00566     // the start block, then there can be no records that cross
00567     // our region, so return 0.
00568     if((linearOffsetSize == 0) || (linearIndex >= linearOffsetSize))
00569 
00570     {
00571         return(0);
00572     }
00573     else
00574     {
00575         // The linear index is specified for this block, so return that
00576         // value.
00577         minOffset = myRefs[refID].ioffsets[linearIndex];
00578 
00579         // If the offset is 0, go to the previous block that has an offset.
00580         // This is due to a couple of bugs in older sam tools indexes.
00581         // 1) they add one to the index location (so when reading those, you
00582         // may be starting earlier than necessary)
00583         // 2) (the bigger issue) They did not include bins 4681-37449 in
00584         // the linear index.
00585         while((minOffset == 0) && (--linearIndex >= 0))
00586         {
00587             minOffset = myRefs[refID].ioffsets[linearIndex];            
00588         }
00589     }
00590     return(minOffset);
00591 }
00592 
00593 
Generated on Wed Nov 17 15:38:27 2010 for StatGen Software by  doxygen 1.6.3