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Abstract 

 

Coupling chromatin immunoprecipitation (ChIP) with recently developed massively 

parallel sequencing technologies has enabled genome-wide detection of protein-DNA 

interactions with unprecedented sensitivity and specificity. This new technology, ChIP-

Seq, presents opportunities for in-depth analysis of transcription regulation. In this study, 

we explore the value of using ChIP-Seq data to better detect and refine transcription 

factor binding sites (TFBS). We introduce a novel computational algorithm named 

Hybrid Motif Sampler (HMS), specifically designed for TFBS motif discovery in ChIP-

Seq data. We propose a Bayesian model that incorporates sequencing depth information 

to aid motif identification. Our model also allows intra-motif dependency to describe 

more accurately the underlying motif pattern. Our algorithm combines stochastic 

sampling and deterministic ―greedy‖ search steps into a novel hybrid iterative scheme. 

This combination accelerates the computation process. Simulation studies demonstrate 

favorable performance of HMS compared to other existing methods. When applying 

HMS to real ChIP-Seq datasets, we find that (i) the accuracy of existing TFBS motif 

patterns can be significantly improved; and (ii) there is significant intra-motif 

dependency inside all the TFBS motifs we tested; modeling these dependencies further 

improves the accuracy of these TFBS motif patterns. These findings may offer new 

biological insights into the mechanisms of transcription factor regulation.    
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Introduction  

 

Accurately locating the transcription factor (TF)-DNA interaction sites provides key 

insights into the delineation of the underlying mechanisms of transcriptional regulation. 

By exploiting the fact that binding sites for a specific TF often show sequence specificity, 

computational prediction of TF binding sites, or motif finding, has become an 

indispensible tool for functional genomics research. A variety of different software 

programs have been developed for motif-finding (1-7) (see Tompa et al. (8) for a review 

of this topic).  

 

The input data for computational motif-finding algorithms are DNA sequences believed 

to be enriched by the TF binding sites, or motifs. Typical sources of the input data are 

known co-regulated genes (7), phylogenetic conservation (9), or results from functional 

genomics experimental assays (1,10-12). For the latter, continually evolving high-

throughput technologies, from DNA microarray (13,14) to ChIP-chip (15,16) and now 

ChIP-Seq (17-20), offer rapidly improving opportunities for motif finding.   

 

ChIP-Seq, or chromatin immunoprecipitation (ChIP) (21,22) followed by ultra-high-

throughput sequencing, has emerged as a powerful new technology for genome-wide 

mapping of protein-DNA interactions and histone modifications (17-20). Through direct 

sequencing of all DNA fragments from ChIP assays, ChIP-Seq can reveal protein-DNA 

interaction sites across the entire genome, thus building a comprehensive and high-

resolution interactome map for DNA-binding proteins of interest.  

 

From past experience, exploiting the quantitative information provided by high-

throughput genomic assays allows scientists to develop more effective motif-finding 

algorithms. Improvements in motif detection have been reported in studies using 

microarray (10,11) and ChIP-chip (1,12) data. The newly emerged ChIP-Seq technology 

has demonstrated remarkable sensitivity and specificity in identifying protein-DNA 

binding loci across the entire genome with high resolution and few constraints. In excess 

of 10,000 DNA sequences are routinely being identified as candidates that potentially 

harbor protein-DNA interaction sites of interest. Such information provides an exciting 

new venue for motif discovery and refinement. 
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A de novo motif search is a natural follow-up to the identification of ChIP-enriched 

regions. Not only it is required when the TF binding motif pattern is unknown, it is also 

important in cases where TF and its canonical binding motif pattern have been 

established. After all, it is reassuring to be able to rediscover the known TFBS motif 

pattern from the input sequences. More importantly, most of the known TF binding motif 

patterns stored in the various TF binding motif databases or reported in the literature are 

defined based on limited numbers of experimentally verified TF-DNA interaction sites. 

Many of these motif patterns could be inaccurate due to limited experimental data. 

Performing a de novo motif search on a large number of ChIP-Seq binding sites has the 

potential to refine the motif patterns of the TFBS.  

 

While a variety of methods that attempt to identify ChIP-enriched genomic regions from 

ChIP-Seq experiments (also called ―peak calling‖) have been described (23-31), little has 

been developed utilizing ChIP-Seq data for motif finding.  

 

Probability model-based de novo motif finding algorithms such as MEME have 

demonstrated a high level of sensitivity and specificity (2-5,32-36). However, since these 

methods were developed when only a handful of motif-enriched sequences were 

available, they do not work well when analyzing large sets of sequences identified by 

ChIP-Seq. There are at least two limitations that affect their performance: (1) the 

requirement for going through all bases in all sequences using time-consuming iterative 

procedures means that these methods do not scale well for the analysis of large sets of 

sequences generated from ChIP-Seq; (2) existing methods, which only consider sequence 

data, are unable to fully utilize the rich information produced from ChIP-Seq. Overlooked 

information includes the sequencing depth along the ChIP-enriched regions and the 

overall significance of ChIP-enrichment for each sequence. ―Sequencing depth‖ refers to 

the number of ChIP DNA fragments that cover each base. Currently, a common practice 

for performing motif finding on ChIP-Seq data is to use existing motif-finding tools on a 

subset of all sequences (e.g., the top 500 sequences or top 10% of all such sequences) 

(25,26). This is sub-optimal because the small sample size may lead to an inaccurate 

motif pattern and the selection of top sequences tends to result in motif patterns with 

inflated information content.  

 

We believe that a more desirable approach is to develop algorithms that can utilize all of 

the sequence information generated from ChIP-Seq. Not only will this strategy result in 



5 

 

the identification of more accurate motif patterns, but also the dramatically increased 

number of in vivo binding sites revealed by ChIP-Seq permits the use of probability 

models that are more sophisticated than the commonly-used product multinomial models 

(34) for characterizing the motif pattern.  

  

To address these limitations and fully exploit the information provided by ChIP-Seq 

experiments, we develop a novel model-based motif-finding algorithm named the Hybrid 

Motif Sampler (HMS). It is specifically designed for ChIP-Seq data and utilizes all ChIP-

enriched regions identified from ChIP-Seq experiments. In this algorithm, we propose a 

new probability model that considers both DNA sequence and sequencing depth 

information that is available from ChIP-Seq experiment. It also allows inter-dependent 

positions within a motif to be identified. In addition, we propose a novel hybrid searching 

scheme to significantly expedite the iterative procedure. Our algorithm is capable of 

processing tens of thousands of sequences and is much faster than the established de novo 

motif-finding tools such as MEME.  
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Material and Methods 

 

The Statistical Model 

 

Let ),...,( J1 RRR denote a set of J  sequences (e.g., DNA sequences in ChIP-enriched 

regions identified by ChIP-Seq) of length JLL ,...,1 . We initially assume that every 

sequence jR contains exactly one binding site. In addition, the vector that is formed by 

the start locations is referred to as the alignment variable, denoted as )( 1 J,...,aaA where   

JjwLa jj ,...,2,1,11 . Here w  is the motif width and is assumed to be known.  

Given A  and w , the aligned sequence motif can be represented by a four by w  matrix. 

Each column of the matrix stores the frequency counts of the four types of nucleotides. 

Liu et al. (34) proposed the product-multinomial model to model the nucleotide 

preferences shown in such matrices. The product-multinomial model has been widely 

used in EM-based (4,32) and Gibbs sampler-based (3,33,35) motif finding algorithms. 

Let ),...,( w1 θθΘ , iθ  represent the nucleotide preference at the i th position of the motif 

and let the probability vector 0θ  represent the nucleotide preference for non-motif 

positions in these sequences. Each of the wi ,...,2,1,0,iθ  is a probability vector of 

length four. For notational simplicity, we use integers 1, 2, 3 and 4 to represent the four 

types of nucleotides A, C, G and T.  

 

For de novo motif finding, the parameter of main interest in our model is the alignment 

variable A . Lawrence et al. (3) proposed a Gibbs sampler-based approach in which the 

posterior distribution for alignment ja can be expressed as:  
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Where ),...,,( 111 Jjj aa,...,aaj-A and the functions 4,3,2,1(),khk , returns the number 

of nucleotides of type k. 

 

For 0θ and Θ , as an alternative to sampling them from posterior conditional distributions 

as in a standard Gibbs sampler, one can use the predictive updating technique (34) to 

integrate them out. Alternatively, the posterior means can be used to approximate the 
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updated parameters during iteration. More details of these strategies can be found in Liu 

et al. (34) 

 

Allowance for some sequences that do not contain the motif  

In the model above, we assume that every sequence jR contains exactly one motif. 

However, this is not the case in real data. To increase specificity, as most motif-finding 

algorithms have done, it is highly desirable that we generalize the method to allow some 

sequences to be motif-free. We introduce a binary indicator variable jI  where  1jI  

indicates that jR contains at least one motif, and 0jI otherwise. In the algorithm, jI is 

set to 1 if the average of likelihood ratios observing the motif in the sequence jR , 

denoted as jz , is greater than 1. i.e., 
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After updating jI , we only conduct motif search on the sequences with 1jI .  

 

Modeling sequencing depth  

The model described in equation (1) assumes that binding motifs are equally likely to 

occur at all positions in each sequence. This is reasonable when no information beyond 

the input DNA sequences is considered. However, such a model is no longer sufficient 

for analyzing ChIP-Seq data since additional information beyond the DNA sequences is 

available and should be incorporated. In particular, it has been shown that the sequencing 

depth in each ChIP-enriched region is indicative of the motif location (25,28). Figure S1 

in the Supplementary Material shows that the majority of motifs are tightly packed near 

the peak summit (the location inside each peak with the highest sequence coverage 

depth), especially for the highly-significant peaks.  

 

To capitalize on the extra information provided by ChIP-Seq, we propose adding to the 

method an informative prior distribution of the motif location based on the sequencing 

depth. There are multiple ways to assign such priors. The simplest strategy is to make the 
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prior probabilities directly proportional to the sequencing depth in each sequence. 

However, since sequencing depth is affected by many factors, such as local GC content, 

using a prior distribution like this may result in ―over fit‖. Alternatively, a parametric 

distribution that approximates the sequencing depth can be used to obtain the prior 

probabilities. In this study, we set the prior probabilities to be proportional to a 

discretized Student’s t-distribution with three degrees of freedom and rescaled such that 

the prior probabilities form a step function with a fixed step-size (25 bp in this study). 

The prior probabilities are symmetric and centered at the peak summit (most peak-calling 

software provides the exact location of the summit). Specifically, the prior probabilities 

that a motif starts at position l can be expressed as: 

 

u

uswl
tlap

j

j

2/|2/|
int)( 3

. (3) 

Where t3 is the probability density function of the Student’s t-distribution with three 

degrees of freedom, sj is the location of the peak summit, w is the motif width, u is the 

step size (25 bp in this study) in the step function and int ][  returns the integer part of a 

real number. Please see Figure S2 for an illustration of the prior probabilities. The reason 

that we choose Student’s t-distribution instead of a normal distribution is because it better 

allows for some motif locations to be far from the peak (the standard deviation of 

Student’s t-distribution with three degrees of freedom is 1.73, compared to one for 

standard normal distribution).  

 

Modeling intra-motif dependency 

The classical product-multinomial model assumes that the positions within the motif are 

independent of each other (37). However, recent studies indicate that some positions of 

TF binding motifs exert an inter-dependent effect on the binding affinities of TF’s (38-

41). These findings imply that the commonly used product-multinomial model may be 

too simplistic in characterizing the binding sites. Models that allow for dependent 

positions likely will provide a better fit of the data. The significantly increased quantity 

of motifs identified by ChIP-Seq enables us to consider a more sophisticated model that 

can take into account the intra-motif dependency.  

 

There have been numerous attempts to incorporate into models the inter-dependency 

among positions within a motif. King and Roth (42) introduced a non-parametric 

representation of motifs that allows arbitrary dependencies among positions. Barash et al. 

(43) suggested multiple Bayesian network models to represent dependencies among motif 
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positions. Zhou and Liu (44) proposed a generalized weight matrix model in which a 16-

component multinomial model is used to model two dependent positions jointly. 

 

Here we extend the generalized weight matrix model of Zhou and Liu. To take greater 

advantage of the abundant sequence information made available by the ChIP-Seq 

technology, our model allows up to three positions to be inter-dependent.  

 

Detection of dependent positions 

Given a set of aligned putative binding motifs, our goal is to identify positions that show 

inter-dependency. Here ―inter-dependency‖ implies that the frequency of certain 

nucleotide combinations spanning multiple positions deviates from the expected 

frequency when assuming an independent motif model. As an example, for a pair of 

positions, if the frequency of a particular dinucleotide, say AC, is much higher or lower 

than the product of frequency of nucleotide A in the first position and frequency of 

nucleotide C in the second position, we conclude that the two positions are dependent.  

 

A variety of methods have been proposed in the literature to search for such inter-

dependent positions. Barash et al. (43) applied machine learning approaches to infer the 

structure of a Bayesian network that best represents the underlying motif. Zhou and Liu 

(44) proposed a Metropolis-type iterative procedure to identify pairs of inter-dependent 

positions. Given the abundant motif data from ChIP-Seq, we implement a comprehensive 

search strategy to go through all pairs of positions within the motif to determine whether 

there is evidence of dependency. To be specific, for any two positions i  and j  among 

2/)1(ww  possible pairs, we first obtain probability estimates of the 16 dinucleotides 

assuming either a 16-component multinomial model (dependent) or the product of two 

four-component multinomial models (independent). Let the number of motifs be 

represented by M . The term )( ix rg  represents the number of motifs whose i th position 

is occupied by nucleotide x and the term ),( jixy rrg  represents the number of motifs 

whose i th and j th positions are occupied by nucleotides x and y respectively. The 

probability estimates under the two competing models are Mrgr ixix /)()(ˆ  and 

Mrrgrr jixyjixy /),(),(ˆ , respectively. We then calculate the Hamming distance 

between the two sets of estimates as  
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Under the hypothesis that the two positions are independent, we expect that distance 

0ijd , excluding sampling variability; larger ijd  indicates stronger inter-dependency 

between positions i  and j . In this study, we designate positions i  and j  to be dependent 

if 2.0ijd . The threshold is determined from the empirical null distribution of ijd  infer 

through simulations. More details can be found in the Supplementary Material.  

 

Posterior distribution 

We take a Bayesian approach and consider two different models to describe the motif 

pattern. In the first one, we assume all positions within the motif are independent. There 

are two sets of parameters in this model: alignment variable A  and multinomial 

distribution probability vector wi ,...,1,0,iθ . The prior distributions for A  are 

multinomial with probabilities defined as in equation (3). Adopting a conjugate prior 

distribution for each iθ , which is ),...,( 4,01,0Dirichlet , the posterior probabilities that a 

motif starts at position l can be expressed as: 
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As suggested in Liu et al. (34), the above conditional distribution can be closely 

approximated by replacing ik by its posterior mean given the current alignment vector 

jA : 
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For background (non-motif) regions, it has been shown that employing a Markov model 

to capture weak dependency in background DNA sequences improves the sensitivity and 

specificity of motif finding compared to an independent model in equation (1). In this 

study, we use a third-order Markov model as in Liu et al. (2) to characterize the 

background sequences. Under such a model, the probability of observing DNA sequence 

fragment 1,1,, ,...,, wtststs rrr  in the background can be represented by  
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In this background model, the 19243 3  conditional probabilities are estimated from 

human promoter sequences downloaded from UCSC genome browser website. The 

dataset contains 5kb upstream sequences of annotated transcription starts for all RefSeq 

genes with annotated 5' UTRs.  

 

After incorporating these modifications, the complete posterior distribution for la j   

becomes 
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In the second model, we consider intra-motif dependency. Within the motif, we assign 

positions into two disjoint groups: groups of independent positions S and groups of 

dependent position pairs P where }2.0:),{( ijdjiP . By modeling dependent positions 

jointly, the probability ―matrix‖ Θ  becomes an amalgamation of vectors of length four 

(modeling single positions) and vectors of length 16 (modeling pairs of dependent 

positions). The prior distributions for the two types of jθ ’s are ),...,( 4,01,0Dirichlet  

and ),...,,,...,( 4,4,01,2,04,1,01,1,0Dirichlet  respectively. The complete posterior 

distribution for la j  in the dependent model is 
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Here the counting function ()
21kkh , whose argument is a set of positions, counts the 

frequency of the 16 dinucleotides for a pair of positions within the motif. The above 

model can be extended easily to allow three-way inter-dependent positions.   
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Acceleration via Prioritized Hybrid Monte Carlo 

To streamline this motif-finding algorithm in order to handle a large number of input 

sequences, we develop a prioritized hybrid strategy to increase computation speed with 

only minimal if any sacrifice in accuracy. Unlike a standard Gibbs sampler where motif 

alignment variables are sampled stochastically from all sequences, only a small 

proportion, , of all sequences are subjected to stochastic sampling. For the remaining 

sequences, we select the alignment variable deterministically by identifying the position 

that corresponds to the highest probability as given by equation (8) or (9). Since the 

deterministic approach is much faster than the stochastic one and the proportion  we 

use is often quite small ( ~10%), this hybrid strategy is much faster than the standard 

Gibbs motif sampler (3). 

 

For each iteration, the proportion of sequences undergoing stochastic search is constant, 

but a different set of sequences is selected each time. We have automated the process of 

selecting a subset of sequences for stochastic search. All the sequences identified from 

the ChIP-Seq experiment are rank-ordered according to their ChIP-enrichment. Assume 

we run N  iterations in each Gibbs sampler. In the i th iteration, we sample a fixed 

number of J  sequences from a multinomial distribution ),...,,( 1 iJi ppJmult . At the 

beginning of the iteration, we use a monotonically decreasing triangle probability 

distribution, which assigns higher probability to sequences with higher ChIP-enrichment. 

As the iteration proceeds, the slope of the triangle gradually becomes flatter so that the 

oversampling of higher ChIP-enriched sequences diminishes. In the last iteration, the 

distribution becomes uniform. For the i th iteration, we have  

 
.,...1;,...,1),1(

1

12/
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N

jJ
jJcp ijij  (10) 

 

Implementation 

 

We have developed a software program that implements the algorithms described in this 

manuscript. The HMS program is a Gibbs sampler type iterative procedure. To reduce the 

possibility that the Markov chain converged to a local mode, we run multiple Markov 

chains and choose the motif pattern that corresponds to the highest likelihood as the final 

motif pattern. The number of parallel chains and the number of complete iterative cycles 

within each chain are specified by users. Within each chain, the iterative procedure can 

be broken down into three steps. In the first step, we use a traditional product 
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multinomial model in which all positions are assumed independent of each other. We 

further assume every sequence contain one motif. In the second step, we again assume all 

positions are independent, but we allow some sequences to be motif-free. In the final 

step, we adopt the generalized motif model that allows intra-motif dependency. The HMS 

program, including the source code is freely available at 

http://www.sph.umich.edu/csg/qin/HMS/. 

 

Performance Evaluation Using Simulated Data 

 

In the simulation study, we are interested in evaluating the performance of various de 

novo motif finding algorithms from two perspectives: first, the number of times a 

program successfully detects the motif inserted into each of the 100 simulated datasets; 

second, the accuracy of the inferred motif pattern given that the motif has been found. 

 

For the former, since we know the true location of all inserted motifs in the simulated 

datasets, we are able to directly verify whether each motif site predicted by the testing 

software is correct. Within each simulated dataset, we declare that the inserted motif is 

found if the proportion of sequences in which the program correctly identifies the true 

motif location is greater than 20%.  

 

For the latter, we measure the accuracy of an inferred motif pattern by calculating the 

average Hamming distance between the true probability matrix Θ  and its prediction 

denoted as Θ̂ : 

 4

1 1

ˆ1

i

w

j

ijij
w

h  (11) 

Small h  indicates close resemblance of the predicted motif pattern to the truth.  

 

Performance Evaluation Using Real Data 

 

Given a set of sequences identified by ChIP-Seq, we want to discern which de novo 

motif-finding algorithm produces a more accurate motif pattern. Since the exact true 

motif pattern is unknown, we use motif enrichment as the criterion. We assume that 

among multiple motif patterns, the one that is most enriched in the ChIP-Seq-identified 

regions relative to random controls is closest to the true motif pattern. 
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We use a cross-validation scheme to assess motif enrichment. The original dataset is 

equally divided into halves: a training set and a testing set. The input sequences are 

restricted to within 200 bp in length and centered at the peak summit (no more than 100 

bp toward each side of the peak summit). For the testing set, we create a control set 

composed of randomly selected DNA promoter sequences (within 5kb upstream of the 

transcription start site) as in Zhou and Liu (44) matched by number of sequences and 

length of each sequence. We run each motif-finding program on the training set to 

identify the motif pattern, and then utilize this pattern to scan both the testing and the 

corresponding control sets to assess how many sequences contain the motif. We employ a 

set of significance thresholds and calculate the corresponding empirical false discovery 

rate (FDR) (45) and motif enrichment, as measured by Chi-square test statistics for a 

22  contingency table. The empirical FDR is estimated by dividing the number of 

control sequences that contain the motif by the number of testing sequences that contain 

the motif. We repeat the scheme five times for each dataset and report the average test 

statistics corresponding to each FDR level.  

 

We plot the curves of the empirical FDR versus the Chi-square test statistics when the 

empirical FDR is between 0 and 0.2. To accomplish this, we equally divide the empirical 

FDR into ten consecutive windows and calculate the mean of the Chi-square test statistics 

from five cross validations (when the corresponding empirical FDRs fall into the same 

window). Since the curve representing the most enriched motif pattern will be the highest, 

we use area under the curve (AUC) as a quantitative assessment of the overall motif 

enrichment. Higher AUC indicates further motif enrichment.  

 

Estrogen Receptor ChIP-Seq Experiment on MCF7 Cells 

 

To test the algorithms in a real setting, we have conducted a ChIP-Seq experiment to 

survey genome-wide binding of Estrogen Receptor (ER) on the MCF-7 breast cancer cell 

line. ER is a hormonal TF that, when liganded by estrogen, binds specially to estrogen 

response elements (ERE) and plays a critical role in breast cancer development. 

Identifying ER target genes and refining the ERE motifs are thus of significant interest. A 

brief description of the experimental protocol is shown in the next paragraph. More 

details can be found in the Supplementary Material. 
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Briefly, MCF-7 cells were grown in RPMI media supplemented with 10% FBS to 50% 

confluence. The cells were then hormone-starved for three days prior to treatment of the 

vehicle control or 10nM β–estradiol for 45 minutes. The cells were then harvested for 

ChIP analysis using an antibody against estrogen receptor (ER)-alpha (sc-543x, Santa 

Cruz) or against IgG. The ChIP-enriched DNA was evaluated for significant enrichment 

of positive control genes and then subjected to ChIP-Seq sample preparation and short-

read sequencing using Illumina Genome Analyzer (Illumina Inc, San Diego, CA) 

following the manufacturer’s protocols. The raw sequencing images were analyzed using 

the Illumina analysis pipeline, and the sequencing reads were subsequently aligned to the 

human reference genome (NCBI v36, hg18) using ELAND software (Illumina Inc, San 

Diego, CA), producing sequencing reads of 35 bps. Only sequencing reads that are 

uniquely mapped to the human reference genome with up to two mismatches were 

included for further analysis as delineated in this study. We have submitted ER ChIP-Seq 

data (raw and processed) into the GEO database; the accession number of this dataset is 

GSE19013. We used the HPeak software program, a HMM-based peak calling program 

developed by our group, to define the ChIP-enriched regions. Details of the HPeak 

software program can be found in the Supplementary Material. 
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Results 

 

Simulation Study 

 

Independent motif models 

 

The goal of this simulation study was to evaluate the ability of HMS to identify the 

correct motif patterns. We use the default setting for HMS which adopts the informative 

prior and allows intra-motif dependency. For comparison, we also tested a simpler 

version of HMS that assumes all positions are independent. In addition, we applied two 

established motif-finding software tools, MDscan (1) and MEME (4) on the same sets of 

simulated data. Following the simulation scheme of Liu et al. (1), four motif models were 

manually created (Table S1A), representing two different motif widths (8 bps and 16 

bps), and two different degrees of conservation measured by information content (1.42 

and 0.93). The information content is defined as: 

 w

i j

ijij pp
w 1

4

1

2 )4(log
1

 (12) 

where ijp is the proportion of base j  at the motif position i . Information content ranges 

from 0 to 2, reflecting the weakest to the strongest motifs. Finally, two different motif 

abundance schemes (Table S1B) were considered for a total of eight combinations in the 

simulation study. The eight simulation settings covered a wide range of scenarios. The 

combination of short motif width, weak motif information content and low motif 

abundance was the most challenging. 

 

For each setting, we simulated 100 test datasets. Each dataset contains 3,000 sequences of 

200 bp in length. To mimic real human data, all the sequences were generated from a 

third-order Markov model with parameters estimated from the collection of 5kb promoter 

sequences of annotated genes in the human genome. Hypothetical motifs were generated 

from product multinomial models with specified length and information content. The 

proportion of sequences that contained a motif followed one of the two abundance 

schemes mentioned in the previous paragraph. We assumed that each sequence contained 

at most one motif.  
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We next derived the empirical distribution from real ChIP-Seq data of CTCF and NRSF 

of the motif start locations in a 200 bp window centered at the peak summit. We 

strategically inserted the motifs in these sequences following this empirical distribution.  

As a consequence, the motif locations were biased toward the center of the sequence, 

which was assumed to be the location of the peak summit.  

 

We applied MDscan, MEME and HMS to every dataset. Two versions of HMS were 

used in the comparison. One assumed an informative prior (proportional to a discretized 

and rescaled Student’s t-distribution with three degrees of freedom) that favored motif 

start locations near the peak. The other, denoted as HMS_uniform, assumed a uniform 

prior for the motif start location throughout the genome. As described in the Materials 

and Methods section, we used the successful motif detection rate and the accuracy of 

predicted motif pattern as measurements of performance.  

 

For the motif detection rate, both versions of HMS achieved perfect results in all eight 

simulation settings. MEME and MDscan achieved perfect results in six and four settings 

respectively. MEME achieves equal or higher detection rate than MDscan in all but one 

setting. (Table S2A).  

 

We next compared performance on motif pattern prediction accuracy. The prediction 

accuracy is defined as the average Hamming distance between predicted and true Θ for 

each method and each dataset. See equation (11) in the Material and Methods Section for 

the expression for the average Hamming distance. To compare methods, within each 

simulation setting, we performed a paired t-test between the average Hamming distances 

obtained using HMS and that of a competing method (HMS_uniform, MEME and 

MDscan). Among the 100 datasets, we only considered the ones in which all methods 

successfully detected the right motif. Significantly smaller average Hamming distance (p-

value <0.01) was observed in six out of eight simulation settings when comparing HMS 

to MEME, and in seven out of eight settings when comparing HMS to MDscan (Figure 

1A, 1B and Tables S2A). In addition, we found that adopting the informative prior for the 

proposed HMS method results in more accurate motif pattern prediction in all eight 

simulation settings than when using the uniform prior. (Tables S2A).             

 

Inter-dependent motif models 
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We next conducted simulation studies to evaluate the performance of HMS when some 

positions within the motif showed inter-dependency. In our simulation, dependency was 

added to two pairs of positions in the 8 bp motif model and four pairs of positions in the 

16 bp motif model. The joint distribution of the pairs was taken from the one predicted 

for position pair (1,2) in the E2F motif in Zhou and Liu (44) (as shown in Figure 2(b) in 

the original paper, reproduced in Table S3).  

 

In terms of motif detection, both versions of HMS achieved perfect results in five out of 

the eight simulation settings. MEME and MDscan achieved perfect results in four and 

two settings respectively. Furthermore, HMS and HMS_uniform reported higher 

detection rates compared to MDscan and MEME in all simulation settings. Our results 

also suggest that the HMS method assuming informative prior performed better than the 

HMS method assuming non-informative prior (Table S2B).  

 

When comparing motif pattern prediction accuracy, paired t-tests showed that the average 

Hamming distances between the true and predicted probability matrix Θ  were 

significantly smaller for HMS than MEME and MDscan in all testable simulation settings 

(MEME did not identify the correct motif in any dataset under two simulation settings; 

MDscan only identifies the correct motif in two out of 100 datasets under one simulation 

settings. Therefore no paired t-test is performed for those simulation settings).  The 

performance was similar between the two versions of HMS (Figure 1C, 1D and Table 

S2B).  

 

Real Data 

 

To further evaluate the performance of HMS, we tested it along with MDscan and 

MEME on four real ChIP-Seq datasets. The first three datasets, namely NRSF (neuron-

restrictive silencer factor) (18), STAT1 (signal transducer and activator of transcription 

protein 1) (19), and CTCF (CCCTC-binding factor) (17), are publically-available. The 

ER dataset, however, is newly generated for this study. The details of these four datasets 

can be found in Table S4A and the Supplementary Material.  

 

Intra-Motif Dependency 
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It is well known that some positions of TF binding motifs exert an inter-dependent effect 

on the binding affinities of TFs (38-41). However, due to the scarcity of the motifs 

identified for each TF, it is difficult to detect those dependent positions based solely on 

the limited motif sequence data. With the introduction of the ChIP-Seq technology, 

significantly more motif sequences can now be identified, which gives us unprecedented 

opportunity to identify dependent positions. Using the exhaustive search strategy we 

outlined in the Material and Methods section, we surveyed the four ChIP-Seq datasets 

used in this study: NRSF, STAT1, CTCF, and ER. The Hamming distance between two 

probability vectors— }16,...,1,{ ii and }4,...,1,4,...,1,{ jiji  were presented in 

heatmaps (Figure 2 and Figure S3). The two sets of probabilities of the 16 dinucleotides 

were estimated under the independent and dependent models respectively. Larger 

distance indicated higher dependency. Using the Hamming distance of 0.2 as the 

threshold, the number of dependent position pairs in the motif ranged from three to five 

in the four real datasets we studied (Table S5). These pairs formed two triplets in NRSF 

and CTCF motifs, one triplet and one pair in the STAT1 motif and two triplets and one 

pair in the ER motif. In particular, we found that positions 14 and 15 in the CTCF motif 

show exceptionally strong dependency. The frequency of dinucleotides AC and GG in 

these positions were below what would be expected if they were independent. Similarly, 

the frequency for dinucleotides AG and GC exceeded expectations. The difference in 

dinucleotide frequencies between independent and dependent motif models exceeded 0.1 

in all four relevant cells in the four by four table (Table S6E). For other dependent 

position pairs we identified, their dinucleotide frequencies were summarized in Table S6. 

 

An interesting question is that, at position pairs that show significant inter-dependency, 

whether any particular dinucleotide displays significant enrichment or depletion. To 

address this, in the 16 dependent position pairs identified from the four motifs, the 

observed dinucleotide frequencies were compared with the expected frequencies under 

the assumption that the two positions are independent. We noticed that some 

dinucleotides, such as TG, CA and AG are over-represented, whereas some dinucleotides, 

such as CG and TA, are under-represented (Figure S4). We found that the overall 

dinucleotide preference pattern observed is consistent with what has been reported in the 

literature (46).   
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Although our search strategy considers all pairs equally, we found that the strongest intra-

motif dependency occurred at pairs of adjacent positions (Figure 2 and Figure S3). All 16 

dependent position pairs we identified in the four motifs were adjacent. This is not 

surprising given the strong dependency in neighboring positions of DNA sequences. We 

also found that strong intra-motif dependency often occurred in the so-called ―gap‖ 

positions where the motif pattern appeared to be ―weak‖ according to single-column 

motif model (e.g., positions 10, 11 and 11 and 12 in the ER motif).  

 

TFBS Motif Profile Comparison 

 

Since both HMS and MDscan were able to rapidly process tens of thousands of DNA 

sequences without sacrificing much computation time, we fed the entire set of ChIP-

enriched regions into these two programs. In this comparison, we only used the top 500 

sequences as input for MEME, since this program was not optimized to analyze large 

numbers of DNA sequences. Next, we applied MAST (47), a motif scanning software 

that is a companion to MEME, to scan the remaining sequences using the motif pattern 

identified by MEME. This is a commonly-used strategy in motif analysis (26). We also 

included motif patterns either from the literature (CTCF motif from Kim et al. (48)) or 

from MatBase (Genomatix, Software GmbH, Munich, Germany) for comparison. We 

used two different versions of HMS in our analysis: the default setting allowing 

dependency among positions in the motif and HMS_ind assumed all positions are 

independent. Informative prior for alignment variable A is used in both versions of HMS.  

 

Although the four TFs and their binding motifs were quite diverse, the motif pattern 

identification results were remarkably consistent. The results from the ER dataset are 

presented in Figure 3. Results from the three publicly available ChIP-Seq datasets can be 

found in Figure S5-7 in the Supplementary Material. Inspired by the logo plot (49), we 

have developed a new plot that can be used to visualize the dinucleotide and trinucleotide 

motif pattern (Figure 2 and Figure S3). This is achieved by modifying the SeqLogo 

package (50) found in the BioConductor open source software package. More details can 

be found in the Supplementary Material. 

 

Figure 3A showed that de novo motif patterns identified by MEME and HMS from the 

ER ChIP-Seq dataset. Both patterns were similar to the ER motif stored in MatBase. 

However, the motif pattern identified by HMS was relatively less conserved (average 
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information content: HMS: 0.64, MEME: 0.71, Genomatix V$ER01: 1.00, Genomatix 

V$ER02: 1.03, Genomatix V$ER03: 0.89) but more palindromic (reverse compliment) 

than the other motif patterns (Hamming distance between the two 6-mer half sites after 

one half site was converted to its reverse complement: HMS: 0.09, MEME: 2.57, 

Genomatix V$ER01: 4.00, Genomatix V$ER02: 2.18, Genomatix V$ER03: 2.53). The 

results are encouraging since it is well known that ER binds as a homo-dimer so a 

palindromic pattern is expected in its TFBS motif.    

 

An intriguing question is if dinucleotides also exhibit the palindromic attribute. Among 

the five dependent position pairs that HMS identified in the ER motif, position pairs 3-4 

and 18-19 were especially well-positioned to serve as a test case for the presence of this 

palindromic attribute. This is because they are located at the two ends of the ER half sites 

and do not overlap. We found that the 16 dinucleotide frequencies for positions 3-4 

matched almost perfectly with the corresponding dinucleotide frequency at positions 18-

19 after reverse compliment transformation (Table S7). That is, we did observe 

dinucleotide dependency at the two ends of the ER motif that exhibited palindromic 

attribute. This led us to hypothesize that the palindromic property, a hallmark of homer-

dimer TF binding motifs, can also be found in the dinucleotide level. 

 

We did not include MDscan in our comparison since MDscan was unable to consistently 

identify the consensus ER motif pattern. In Figure 3B, we plotted the Chi-square test 

statistics that measured the motif enrichment at different levels of the empirical FDR. 

Comparing AUC, we found that the motif patterns identified by MEME and HMS 

showed much higher AUC than the known motif patterns stored in MatBase. We believe 

that the dramatically increased number of binding sites identified by ChIP-Seq 

contributed to the refinement of the motif pattern. MEME and a simplified version of 

HMS (which used an independent mono-nucleotide model, referred as HMS_ind) 

exhibited a similar result. AUC for HMS, which allowed up to three-way 

interdependency, was 16.7% higher than MEME (Table S8). The improvement is 

statistically significant when we repeated the cross-validation steps 100 times and 

compared the AUCs from HMS and MEME using a paired t-test (p-value < 1.0e-5). We 

also compared the proportions of ChIP-enriched sequences that contain each of the ER 

motif patterns shown in Figure 3A. We found that, under the two empirical FDR levels 

(0.05 and 0.1), the proportion of motif pattern defined by HMS is higher than that from 

HMS_ind (by 12.95% and 8.07% respectively). Comparing HMS to MEME under these 
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empirical FDR levels, the proportion of motif pattern defined by HMS again is higher (by 

19.52% and 9.20% respectively). These differences are again significant (p-value < 1.0e-

5) when verifying with paired t-test comparing results from 100 cross-validations. In 

addition, we found that proportions of motifs reported by HMS, HMS_ind and MEME 

are much higher than those found in the MatBase (Table S9). 

 

Among the other datasets (NRSF, STAT1, and CTCF), HMS and MEME consistently 

identified the consensus motif patterns in all trials. MDscan was able to consistently 

identify only the NRSF motif, but not the ones for the other two datasets. Again, we 

found that the motif patterns identified by these de novo motif-finding tools were more 

enriched than known motif patterns found in the literature or MatBase. Motif patterns 

defined by HMS consistently showed higher enrichment and resulted in higher AUC than 

MEME (Figures S4-6, Table S8). Motif patterns defined by HMS are consistently found 

in more ChIP-enriched sequences than those defined by HMS_ind and MEME at the 

same empirical FDR levels (Table S9). The performance differences are significant 

except for the STAT1 motif. 

 

Comparison to ChIP-chip Data 

 

In order to confirm that the higher enrichment of the motif identified by HMS on ChIP-

Seq data was not platform-dependent, we compared an independent set of testing and 

control sequences using ChIP-chip. Not only the technology is different, but also the cells 

and antibodies used. Detailed information about these datasets can be found in Table S4B 

and the Supplementary Material.  

 

Despite all the differences, we found that the ER motif pattern identified by HMS from 

ChIP-Seq data once again exhibited significantly higher enrichment than those of 

HMS_ind and MEME (Figure 3C): the improvements of AUC were 17.5%, and 57.4%, 

respectively (Table S8). These differences are statistical significant (p-value < 1.0e-5). 

Similar plots and AUC comparisons performed on the other three datasets—NRSF, 

STAT1 and CTCF—showed comparable patterns (Figures S4-6, Table S8). These 

findings support that the motif pattern identified by HMS has a higher accuracy. 

 

Computation Time 
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All computation was performed on Dell PowerEdge 1950 compute nodes with 2.83 GHz 

CPU processors and 8 GB RAM. To compare the computation time required for each 

algorithm, we selected the top 500, 1,000, 1,500, 2,000, up to 5,000 sequences identified 

from the NRSF ChIP-Seq data and fed them into the three motif-finding programs—

MDscan, MEME, and HMS. We found MDscan to be the fastest, with HMS a close 

second. Computation time increased linearly with the number of sequences for MDscan 

and HMS; and both were much faster than MEME. The differences are quite dramatic. 

For real data, computation times for HMS ranged from 0.4 hours (NRSF data) to about 

2.5 hours (CTCF data). However, since all parallel chains are independent, computation 

time can be reduced to one tenth if using a multi-processor computing cluster. In contrast, 

MEME takes much longer; from 13 hours (NRSF data) to more than 23 days (CTCF data, 

job aborted after 23 days of running).  
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Discussion  

The newly-emerged ChIP-Seq technology is capable of comprehensively revealing 

protein-DNA interacting sites across the entire genome with high resolution, which 

presents both opportunities and challenges for the identification of TFBS motif patterns. 

Increasing the number of input sequences allowed us to define TFBS motif patterns more 

accurately. However, most of the existing motif-finding programs such as MEME are not 

optimized to analyze the large number of input sequences that are generated from ChIP-

Seq experiments. In this manuscript, we introduce HMS, a novel computational algorithm, 

specifically designed for TFBS motif discovery from ChIP-Seq data. It combines 

stochastic sampling with deterministic optimization in an iterative procedure. The 

assignment of sequences to these two treatments was dependent on the ranks of the ChIP-

enrichment of those regions. This prioritized hybrid Monte Carlo strategy allows us to 

rapidly analyze tens of thousands of input sequences and produces an accurate estimate 

of the motif pattern. Our algorithm has the additional advantage of leveraging sequencing 

depth within each region to aid motif identification. Since the shape of sequencing depth 

is indicative of likely loci of the motif, using an informative prior gives HMS greater 

capability to identify weaker motifs than it could otherwise, a clear advancement. 

 

In addition, using HMS we found that there is substantial intra-motif dependency among 

selected pairs of positions. We identified 16 highly significant position pairs within the 

NRSF, STAT1, CTCF and ER motifs. All of these position pairs are adjacent to each 

other, some form triplets. In particular, we noticed a position pair (14 and 15) in the 

CTCF motif that displays exceptionally strong dependency in which dinucleotides AG 

and GC are far more frequent then AC and GG at these two positions. Interestingly, we 

found that dinucleotides at dependent position pairs in the ER motif also exhibit 

palindromic property, a hallmark for binding motifs of homer-dimer TFs. Using both 

simulated data and real data, we showed that incorporating dependent positions in a motif 

model offers further improvement in detecting and characterizing the underlying TF 

binding motif patterns.  

 

Currently, most de novo motif searches on sequences identified by ChIP-Seq are 

conducted on a subset of all available sequences. This is because searching through the 

full set of thousands, or even tens of thousands, of input sequences using existing motif-

finding tools is extremely time-consuming. Our simulation study showed that this 
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strategy, while convenient, has increased the likelihood of missing the true motif patterns. 

Further, the probability matrix Θ  inferred with this strategy are often less accurate. In 

contrast, HMS allows us to analyze the full set of input sequences within only a fraction 

of the computational time required for existing de novo motif-finding tools like MEME. 

In this study, stochastic search was performed on the top 10% of all sequences. This 

proportion is adjustable by users. We have experimented increasing or decreasing the 

10% cutoff and found that these changes made little difference in the performance of 

HMS.  When applied to multiple real ChIP-Seq datasets, we found that the motif patterns 

identified by HMS tend to be more enriched than motifs identified by other methods. 

Remarkably, when comparing the same motif patterns identified from ChIP-Seq data to 

enriched regions identified from independent ChIP-chip experiments for the same TF, 

even with different cell types or different antibodies or both, we still found that motif 

patterns identified by HMS showed higher enrichment in the ChIP-enriched regions 

relative to random control sequences. This finding suggests that the motif patterns 

identified by HMS are closer to the underlying motif pattern recognized by the TF. 

 

In this study, we utilized ChIP-enrichment of the peaks to rank order all input sequences, 

believing that ChIP-enrichment is positively correlated with the motif abundance. 

However, there are many potential reasons, both biological and technical, that a particular 

region is sequenced more deeply. These include the availability of the antibody’s epitope 

during the immunoprecipitation step, conformational changes on the TF, abnormality in 

the cell line such as aneuploidy, bias introduced during the sequencing library 

construction, nucleotide-induced sequencibility bias (such as GC content) and bias 

related to alignment (repeat regions, various polymorphisms). These complications will 

reduce the correlation between ChIP-enrichment and sequencing depth. We believe 

advanced models that consider these factors will further improve the performance of 

HMS. Another potential enhancement would be to model the protein-DNA binding 

affinity indicated by read density using thermodynamic models (51).   

 

In this study, if the motif width is unknown, we run HMS with every possible width 

within the range specified by the user and report all significant motif patterns. One 

possible improvement to this step would be to allow motif width w to vary during 

iterations (52). For example, we may add a Metropolis step, with equal probability of 

adding or removing one base at one end of the motif, and test whether the new motif 

pattern provides a better fit with the data. Another possible area for improvement 
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concerns multiple binding sites. Currently, HMS is only designed to search for the 

primary binding site (i.e., the binding motif of the regulatory protein being ChIP’ed). 

However, we can also use HMS to identify secondary binding sites by masking the first 

motif identified and re-running HMS on the masked sequences. 

 

In summary, we showed that ChIP-Seq data can significantly increase our ability to 

discover and refine TFBS motif patterns. However, new computational tools are needed 

in order to efficiently and thoroughly handle the ChIP-Seq data, as well as to exploit the 

various advantages of ChIP-Seq technology. The development of the highly scalable 

HMS algorithm represents an early attempt. With significant improvement in both 

accuracy and computation speed, we believe that HMS will be of broad interest to 

researchers conducting ChIP-Seq experiments and has the potential to accelerate 

discovery in biomedical research.   
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Figure Legends 

 

Figure 1. Performance comparison on simulated data with independent and 

dependent motif model. The y-axis represents the difference between two sets of 

average Hamming distances resulted from two different motif finding methods. The error 

bars represent the standard deviation of the difference between two sets of average 

Hamming distances across 100 simulated datasets. A. Independent, motif width = 8 bp. 

B. Independent, motif width = 16 bp. C. Dependent, motif width = 8 bp. D. 

Dependent, motif width = 16 bp.  

 

Figure 2. Illustration of the unbiased exhaustive survey of all pairs of positions 

within the ER motif to assess the strength of their dependency. The differences in 

Hamming distance between the independent and dependent models are plotted in a 

heatmap. Larger differences (in dark red color) indicate higher dependency. Dependent 

triples: position 2, 3 and 4, position 10, 11 and 12. Dependent pairs: position 18 and 19. 

Dependent positions are illustrated in the box on the logo plot and the heatmap.  The logo 

plots are generated using R package ―seqLogo‖ (50). The subgraphs of multi-nucleotide 

logo plots were generated using a program that we modified from SeqLogo (please see 

Section 5 in the Supplementary Material for more details). To make the logo plots more 

readable, we changed the range for y-axis from 0 - 2 to 0 - 1 in the subfigures for multi-

nucleotide logo plot. 

 

Figure 3. Comparison of ER motif patterns identified by different de novo motif-

finding tools, as well as known motif patterns stored in the MatBase (Genomatix 

Software GmBH, Munich, Germany). A. Logo plots (49) of motifs identified by 

various motif-finding programs as well as the ones stored in the MatBase. The logo plots 

are generated using R package ―seqLogo‖ (50). B. Comparison of motif enrichment in 

ChIP-Seq for six different motif finding strategies using cross validation. Training sets, 

testing sets and control sets were generated following the scheme described in the 

Method section (see ―Performance Evaluation Using Real Data‖). C. Comparison of 

motif enrichment in ChIP-chip data using motif patterns identified in ChIP-Seq. In order 

to obtain a smooth curve when plotting empirical FDR versus Chi-square test statistics, 

we applied kernel smoothing using an R function smooth.spline(). 
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 Figure 1.  

A. Independent, motif width = 8 bp. 

 

 

B. Independent, motif width = 16 bp. 
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C. Dependent, motif width = 8 bp. 

 

 

D. Dependent, motif width = 16 bp. 
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Figure 2  
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Figure 3  

A.  

Genomatix V$ER01:                                      Genomatix V$ER02: 

 

Genomatix V$ER03:                                     MEME: 

    

HMS: 

 

B.           C. 

 


