
Genetic Epidemiology 21:53–67 (2001)

© 2001 Wiley-Liss, Inc.

A General and Accurate Approach for
Computing the Statistical Power of the
Transmission Disequilibrium Test for
Complex Disease Genes

Wei-Min Chen 1 and Hong-Wen Deng 1,2*

1Osteoporosis Research Center & Department of Biomedical Sciences,
Creighton University, Nebraska

2Laboratory of Statistical and Molecular Genetics, College of Life Sciences,
Hunan Normal University, ChangSha, Hunan, P. R. China

Transmission disequilibrium test (TDT) is a nuclear family–based analysis that
can test linkage in the presence of association. It has gained extensive atten-
tion in theoretical investigation and in practical application; in both cases, the
accuracy and generality of the power computation of the TDT are crucial. De-
spite extensive investigations, previous approaches for computing the statisti-
cal power of the TDT are neither accurate nor general. In this paper, we develop
a general and highly accurate approach to analytically compute the power of
the TDT. We compare the results from our approach with those from several
other recent papers, all against the results obtained from computer simulations.
We show that the results computed from our approach are more accurate than
or at least the same as those from other approaches. More importantly, our
approach can handle various situations, which include (1) families that consist
of one or more children and that have any configuration of affected and
nonaffected sibs; (2) families ascertained through the affection status of
parent(s); (3) any mixed sample with different types of families in (1) and (2);
(4) the marker locus is not a disease susceptibility locus; and (5) existence of
allelic heterogeneity. We implement this approach in a user-friendly computer
program: TDT Power Calculator. Its applications are demonstrated. The ap-
proach and the program developed here should be significant for theoreticians
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to accurately investigate the statistical power of the TDT in various situations,
and for empirical geneticists to plan efficient studies using the TDT. Genet.
Epidemiol. 21:53–67, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

The transmission disequilibrium test (TDT) [Spielman et al., 1993] was first
developed to control for population admixture/stratification in testing for linkage in
the presence of association between marker loci and disease susceptibility loci (DSL).
It has been argued that the association studies that use the TDT will be the future
major approach to search for genes underlying human complex diseases [Risch and
Merikangas, 1996]. There have been extensive interests in theoretical development
and/or extension of the TDT in recent years [Schaid, 1998]. The TDT has been ex-
tended to the situations with multiple sibs in the absence of parental information
[Curtis, 1997; Spielman and Ewens, 1998; Boehnke and Langefeld, 1998; Monks et
al, 1998; Schaid and Rowland, 1998] and to QTL identification [Allison, 1997;
Rabinowitz, 1997; Xiong et al, 1998; Schaid and Rowland, 1999]. Approaches more
robust and powerful than the TDT may be developed when the linkage disequilib-
rium between a marker and a DSL is not strong [e.g., Huang and Jiang, 1999]. When
the marker locus is not a DSL, the power of the TDT is much reduced [Müller-
Myhsok and Abel, 1997; Xiong and Guo, 1998; Tu and Whittemore, 1999]. The
effects of special ascertainment of families through affection status of family mem-
bers [Whittaker and Lewis, 1998] and allelic heterogeneity [Slager et al, 2000] on
the power of the TDT have been investigated.

In each of the above studies, an accurate power computation is crucial in order to
make correct comparisons of the powers of the TDT and other extended methods un-
der various scenarios and in order to draw quantitatively (and sometimes qualitatively)
correct conclusions. Although it is generally quite accurate to obtain the statistical powers
of the TDT and various extended methods via the Monte Carlo simulation approach,
the simulation is generally time-consuming, especially with large sample sizes and for
some parameters. Hence, it is often not feasible to investigate extensively and system-
atically the statistical power of the TDT with the Monte Carlo simulations. Various
analytical approaches for computing the statistical power of the TDT have been devel-
oped [Risch and Merikangas, 1996; Camp, 1997; Whittaker and Lewis, 1998; Knapp,
1999]. However, these power computation approaches suffer some limitations, and
some of them are erroneous and misleading. For example, as pointed out by Knapp
[1999] and Camp [1999], the approach of Camp [1997] is technically inadequate. Sev-
eral other approaches may sometimes yield inaccurate analytical results of the power
that can be as large as 10% different from the simulated power [Whittaker and Lewis,
1998]. It is noted that, for some of the approaches developed for the power computa-
tion, the analytical results were not compared and cross-checked with simulation re-
sults. An excellent exception is the approach developed by Knapp [1999]. As
demonstrated by simulations [Knapp, 1999], one of his approximations is more accu-
rate than any other then known approaches. However, Knapp’s [1999] approach is
limited because it requires that (1) the marker locus be a DSL, (2) only families with



Computation of the Statistical Power of the TDT 55

single affected offspring (SAO) or an affected sib pair (ASP) be considered, and (3)
the disease statuses of both parents be unknown and random.

In this paper, an extension of Knapp’s [1999] first approximation is developed to
compute the statistical power of the TDT. Our approach is not only highly accurate,
but also quite flexible. Some of the situations that our method can handle include (1)
families that consist of one or more children and that have any configuration of af-
fected and nonaffected sibs; (2) families ascertained through the affection status of
parent(s); (3) any mixed sample with different types of nuclear families in (1) and (2);
(4) the marker locus is not a DSL; and (5) existence of allelic heterogeneity. We imple-
ment our approach in a user-friendly computer program, TDT Power Calculator.

METHODS

Throughout our investigation, as in “classical” TDT analysis [Spielman et al., 1993],
we assume (1) a qualitative trait (disease), (2) the marker genotypes available from both
parents, and (3) at least one affected child available from a nuclear family. In our power
analysis, the study population is assumed to be in Hardy-Weinberg equilibrium. The
null hypothesis of the TDT is no linkage, with the assumption of association.

Fundamentals of Our Analytical Approach of Power Computation
for the TDT

The fundamentals of our approach were laid out by Knapp [1999]. In nuclear
families, the specific marker genotypes of the parents together with those of the
child(ren) constitute a specific type of family. Assume that there are (k + 1) different
types of families. For 1 ≤ i ≤ k +1, let si denote the probability that a family is of
type i, ui denote the number of the M alleles transmitted from heterozygous parents
to their affected offspring for a family of type i, and vi denote the number of other
alleles transmitted. Let the vectors u = (ui)1 ≤ i ≤ k, v = (vi)1 ≤ i ≤ k, and s=(si)1 ≤ i ≤ k. Let
c2

TDT denote the TDT statistic. Under the alternative hypothesis of linkage, 2
TDTχ ap-

proximately follows a normal distribution, with mean mX and variance s2
A1 , where
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e1, e2, d1, d2, d1,2 are functions of u, v, and s, and n is the number of families [Knapp,
1999].
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  distribution with 1 degree of freedom
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where Φ(x) is the cumulative distribution function of a standard normal variable.
Obviously, the power of the TDT is a function of the vectors u, v, s and the sample
size n; or, the sample size n is a function of the vectors u, v, s and the power. Nu-
merical methods such as the bisection method to solve equations can be employed to
compute the sample size n needed for a specified power.

Family Type Pooling

Here we define the family class, which is similar to the concept of type used
by Knapp (1999). To compute the power correctly, the only requirement for a
class is that, for each family belonging to class i, the numbers of the marker
allele M transmitted and not transmitted from heterozygous parents to their af-
fected offspring must be ui and vi respectively. Since for different types of fami-
lies, it is possible that (ui, vi)=  (uj, vj), we can pool these two types of families
together as one class, with a new class probability si+sj. The above combination
of types into classes will not affect the statistical power of the sample. To prove
it, suppose that among SAO families, there are k informative (with at least one
heterozygous parent) types with parameters (si, ui, vi) (i=1,2,…,k). The parental
mating type and the child marker genotype of families with the (k-1)th type are
MM*Mm and MM, respectively, and those of families with the kth type are
Mm*mm and Mm, respectively. Obviously, uk = uk–1 = 1 and vk = vk–1 = 0. There-
fore, these two types can be combined into one class. After pooling, there will be
k-1 informative classes with parameters (si

′,ui
′,vi

′) (i =  1,2,…,k-1). Parameters for
the first k-2 classes remain unchanged. However, now, u′

k–1 = uk–1, v
′
k–1 = vk–1, and
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Therefore, e1 = e′
1. Similarly, e′

2 = e2, d′
1 = d1, d′

2 = d2, and d′
1,2 = d1,2. According to

Equations (1)–(3), the power remains the same before and after the combination of
types into classes.

One class may also be divided into several different classes with families of
different structures for computational ease. A family structure is defined by the num-
ber of children and disease status of individuals in a nuclear family. If sampled nuclear
families are of different structure, the sample is said to be of a heterogeneous family
structure. Suppose that the sample contains families having two different structures
(those with SAO and those with ASP), and SAO families of type i and ASP families
of type j have the same (uj, vj). Therefore, they may be combined as one class. How-
ever, for computational ease, this class may also be broken into two classes, one for
the SAO family structure and the other for the ASP family structure. The flexibility
of combination of types and the division of classes is a powerful tool for our ap-
proach. It generalizes the approach of Knapp [1999] so that computation of the prob-
abilities of any class in a general situation is relatively easy.
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Probability of family class

For the families of the ith type or class, one can count ui and vi easily just like in
the data analyses with the TDT. To compute si, the probability of a family being of
the ith class, we numerate a detailed list of probabilities of the families of all types,
then pool them into different classes.

In the computation, the order of parent is considered. If only one parent is af-
fected, the affected one is called the first parent simply for notational convenience.
Let D, M, G, and H denote the DSL allele, marker allele, two-locus genotype, and
haplotype of the parents, respectively, and d, m, g, and h denote those of the children
respectively. Assume that the genotype of the first parent is G1, or D1

1D
1
2M

1
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1
2, where

the superscripts “1” denote the first parent and the subscripts denote the chromatid
where the allele is located. The genotype of the second parent is G2, or D2
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and that of the sth child is gs, or d1
sd2

sm1
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s. t children are assumed to be in a family.
Disease status is denoted by Cs for the sth child, and Px for the xth parent. Given the
disease status (affected, A; nonaffected, N; unknown, X), the probability that the
family members have a specific set of marker genotypes is:
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where the summation in the numerator is over all possible combinations of geno-
types at the DSL in parents and children, and the denominator can be obtained from
the summation of the numerator over all combinations of genotypes at the marker
locus. The joint probability in the numerator is:
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The probabilities in the above equation are defined as follows. The frequency of haplo-
type Pr(Hk

x) can easily be computed according to the definition of the linkage disequi-
librium coefficient d = Pr(AM) – Pr(A)Pr(M). Assume the penetrance of individuals
with the genotype ij  at the DSL is fij. The probabilities of disease status conditional on
the disease genotype of the parents are, respectively, Pr(Px = A | Dx
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2) can be expressed in terms of penetrances. The transmission probability for the

first haplotype to a child given the first parent’s two-locus genotype is
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If families of heterogeneous structures are considered for the power computa-
tion, e.g., 20% of families with SAO and 80% of families with ASP, one can first
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compute si and hence e1, e2, d1, d2, and d1,2 in families of each structure separately, then
sum the corresponding values for different family structures, each weighted by their
proportions in the sample. In this example, assume the e1 in families with SAO and
ASP is e11 and e12, respectively. The e1 in the combined families of these two heteroge-
neous structures will be 0.2e11 + 0.8e12. e2, d1, d2, d1,2 can be computed similarly. There-
fore, the analytical power of the TDT can be obtained. Note that we do not assume the
number of alleles at the DSL. Therefore, it can handle the case of allelic heterogeneity,
which refers to the existence of multiple disease susceptibility alleles at a DSL.

Although the logic of the above approach is simple, its implementation is not
efficient due to the extensive computation involved, particularly when the number of
children from each nuclear family is large. Therefore, in the Appendix, we develop a
more efficient algorithm, which is currently employed in our computer program.

Computer Program

A program “TDT Power Calculator (PC)” has been developed to implement
our methods, (available at http://www.creighton.edu/~weimin). Not only can this pro-
gram compute the statistical power or sample size analytically, it also has a built-in
simulation module for optional use to obtain the simulated empirical power (to cor-
roborate analytical power) and type I error rates. In this simulation module, nuclear
families are simulated under assigned parameters and hypothesis tests are repeated
for a given number of times. The simulated power is the proportion of repeated
simulations that the null hypothesis is rejected.

To compute the power of the TDT, three kinds of parameters are necessary: (1)
Population-wide parameters: disease allele frequencies and genotype penetrances. (If
the marker locus is not a DSL, recombination fraction and linkage disequilibrium be-
tween the marker and the DSL, and marker allele frequencies should be considered).
(2) Parameters for family structures: the number of different family structures in the
sample; the total number of children within families, the number of affected children,
parental disease status, and the number of families for each kind of family structure. (3)
Statistical parameters: significance level and the number of repeated simulations.

RESULTS

Employing the program “TDT Power Calculator (PC)”, we performed a num-
ber of studies, comparing our analytical computation results with simulation results,
and our analytical results with those from previous approaches. In Tables I–IV, the
numbers given are the sample sizes computed by our analytical approach under the
given significance level a = 5*10–8 in order to achieve the 80% statistical power.
One hundred thousand simulations were performed to test the accuracy of the re-
quired sample sizes. The standard error for the simulated power is about 0.0013.
Unless otherwise specified (e.g., Table II), the marker allele is regarded as the dis-
ease susceptibility allele. The numbers within parentheses are the simulated power
achieved with the sample size computed by our analytical approach. The closer the
simulated power to the specified power of 80%, the higher the accuracy. p is the
frequency of the disease susceptibility allele. fAA, fAa, and faa are the genotype pen-
etrances. f is the disease prevalence. d is the linkage disequilibrium coefficient. g is
the genotypic relative risk.
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SAO and ASP

Table I contains the results for families with either SAO or ASP. Method “R&M”
was developed by Risch and Merikangas [1996], which was later followed and em-
ployed by several others [e.g., Xiong and Guo, 1998]. Method “PC”  is ours. The re-
sults show that our approach is the most accurate one. As correctly pointed out by
Knapp [1999], Risch and Merikangas [1996] only considered one-sided normal distri-

TABLE I. Sample Size Necessary to Gain 80% Power in the TDT With SAO And ASP Under a
Multiplicative Genetic Model*

SAO ASP

ga pb R&M PC R&M PC

4.0 0.01 1,098 (0.800) 1,100 (0.804) 235 (0.791) 239 (0.806)
0.1 150 (0.787) 152 (0.802) 48 (0.777) 49 (0.799)
0.5 103 (0.783) 105 (0.802) 61 (0.774) 63 (0.805)
0.8 222 (0.790) 224 (0.800) 161 (0.783) 164 (0.798)

2.0 0.01 5,823 (0.773) 5,991 (0.801) 1,970 (0.766) 2,034 (0.795)
0.1 695 (0.773) 717 (0.803) 264 (0.769) 273 (0.799)
0.5 340 (0.767) 352 (0.803) 180 (0.770) 186 (0.800)
0.8 640 (0.773) 660 (0.802) 394 (0.771) 407 (0.800)

1.5 0.01 19,320 (0.767) 20,019 (0.800) 7,776 (0.771) 8,068 (0.804)
0.1 2,218 (0.768) 2,300 (0.799) 941 (0.765) 977 (0.800)
0.5 949 (0.767) 985 (0.798) 484 (0.767) 503 (0.801)
0.8 1,663 (0.768) 1,725 (0.800) 941 (0.764) 977 (0.799)

*R&M represents the analytical power computation approach of Risch and Merikangas [1996]. PC
represents our approach.
ag is the genotypic relative risk.
bp is the frequency of the disease susceptibility allele at the DSL.
The numbers within parentheses are the simulated power with the sample sizes computed by our approach.

TABLE II. Sample Size Necessary to Gain 80% Power in the TDT With SAO When the Marker
Allele Is Not a Disease Susceptibility Allele*

Proportion of
maximum δ

p Multiplicative Recessive Additive Dominant

fAA 0.8 0.8 0.7 0.5
fAa 0.2 0.1 0.37 0.5
faa 0.05 0.1 0.04 0.05

0.1 1.0 520 (0.800) 6,302 (0.800) 286 (0.800) 309 (0.799)
0.8 806 (0.801) 9,797 (0.799) 445 (0.800) 481 (0.800)
0.6 1,420 (0.800) 17,336 (0.800) 785 (0.801) 849 (0.800)
0.4 3,165 (0.802) 38,839 (0.800) 1,748 (0.801) 1,894 (0.799)

0.3 1.0 127 (0.799) 193 (0.800) 161 (0.800) 240 (0.802)
0.8 197 (0.804) 297 (0.800) 251 (0.801) 375 (0.804)
0.6 345 (0.798) 519 (0.799) 443 (0.800) 663 (0.802)
0.4 766 (0.800) 1,147 (0.800) 986 (0.801) 1,482 (0.799)

*The frequency of marker allele is 0.4, and the recombination fraction between the marker locus and
DSL is 0. p is the frequency of the disease susceptibility allele. fAA, fAa, andfaa are the genotype
penetrances. f is the disease prevalence. δ is the linkage disequilibrium coefficient.
The numbers within parentheses are the simulated power with the sample sizes computed by our approach.
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TABLE III. Sample Size Necessary to Achieve 80% Power in the TDT With SAO, ASP, and DSP With Parents
Having Difference Disease Status*

NN AN AA XX

PC W & L PC W & L PC W & L PC W & L

1
SAO 100 (0.798) 108 (0.891) 45 (0.820) 45 (0.819) 126 (0.798) 126 (0.798) 61 (0.799) 64 (0.903)
DSP 133 (0.795) 146 (0.903) 43 (0.818) 43 (0.821) 107 (0.801) 107 (0.801) 66 (0.797) 73 (0.912)
ASP 25 (0.813) 26 (0.862) 24 (0.807) 24 (0.809) 74 (0.804) 74 (0.806) 27 (0.798) 26 (0.750)

2
SAO 254 (0.802) 258 (0.817) 193 (0.799) 196 (0.813) 156 (0.801) 158 (0.813) 235 (0.800) 240 (0.818)
DSP 270 (0.800) 275 (0.816) 202 (0.804) 205 (0.817) 160 (0.807) 162 (0.818) 250 (0.801) 255 (0.820)
ASP 88 (0.805) 90 (0.825) 79 (0.795) 81 (0.818) 72 (0.794) 74 (0.819) 85 (0.805) 87 (0.827)

*W&L denotes the results obtained by the analytical approach of Whittaker and Lewis [1998] and PC denotes those by our
approach. The disease status of parents of each nuclear family is denoted as follows: NN, two unaffected parents; AN, one
parent affected and the other unaffected; AA, two parents affected; XX, disease status of the two parents is not considered
when a family is ascertained.
The numbers within parentheses are the simulated power with the sample sizes computed by our approach.
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bution for approximating the distribution of the TDT statistic. Even if a two-sided
normal distribution is considered, the accuracy of the method of Risch and Merikangas
[1996] is the same as the second approximation (the less accurate one) of Knapp [1999]
for SAO. Serious errors in the paper of Camp [1997] were found by Knapp [1999] and
Camp (1999). In some cases, the simulated power based on the calculated sample size
with Camp’s (1997) approach is less than 0.002 although it is expected to be 0.80.
Slager et al. (2000) unfortunately made the same mistake as Camp (1997) in their
analytical power computation. Even with the correction and improvement of Camp
[1999], her approach is still less accurate than Knapp’s [1999] or ours.

Marker Allele Is Not a Disease Allele

The sample size needed increases at an accelerating rate in two situations (Table
II): (1) when allele frequency of the marker deviates increasingly from that of the
DSL; and (2) when the degree of linkage disequilibrium deviates increasingly from its
maximum. This is true even if the marker locus and the DSL are so closely linked that
the recombination between them is essentially zero. The case when there is recombina-
tion between the marker locus and the DSL shows qualitatively the same conclusion
(data not shown). Muller-Myhsok and Abel [1997] and Xiong and Guo [1998] pointed
out this phenomenon, and Tu and Whittemore [1999] elaborated on it with detailed
analyses. Table II also shows that our approach is extremely accurate and robust.

Parental Disease Status Is Considered

In Table III, in the first situation, the penetrances for AA, Aa, aa are 0.77, 0.77,
and 0.028, respectively. P is 0.05, and the disease prevalence is 0.1. In the second
situation, the penetrances for AA, Aa, and aa at the DSL are 0.55, 0.19, and 0.07,
respectively. P is 0.125, and the disease prevalence is 0.10. They correspond to the
first and eighth situations respectively considered in Whittaker and Lewis [1998].

Table III shows the comparison of two different approaches (ours and that of
Whittaker and Lewis [1998]) to compute the sample size when parental disease sta-

TABLE IV. Sample Size Necessary to Achieve 80% Power in the TDT With Different Family
Structures Under Different Models of Inheritance (MOI)*

MOI

  f    p  fAA    fAa   faa S+D S+A D+A S+D+A

Multiplicative 0.1 0.125 0.55 0.19 0.065 242 126 128 150
(0.799) (0.814) (0.813) (0.807)

Recessive 0.107 0.1 0.8 0.1 0.1 1,568 308 324 441
(0.801) (0.803) (0.802) (0.805)

Additive 0.14 0.1 0.5 0.3 0.1 338 186 188 219
(0.801) (0.807) (0.801) (0.801)

Dominant 0.1 0.1 0.13 0.13 0.09 4,080 2,524 2,534 2,895
(0.802) (0.805) (0.791) (0.805)

*The simulation parameters under different MOI are specified in columns 2–6. In this table, S, D and
A denote the types of children in nuclear families: S = SAO, D = DSP, and A = ASP. S+D, S+A, and
D+A denote mixture of families with different structures of different types of children, with each fam-
ily structure composing the same proportion of 50% in the mixture. S+D+A denote the mixture of
families with three different structures, with each composing the same proportion of 1/3 in the mixture.
The numbers within parentheses are the simulated power with the sample sizes computed by our approach.
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tus is (1) unknown (XX), (2) neither parent affected (NN), (3) only one parent af-
fected (AN), or (4) two parents affected (AA). In the situation investigated by
Whittaker and Lewis [1998], nuclear families have (1) SAO, (2) DSP (discordant sib
pairs, i.e., one affected and the other unaffected), or (3) ASP. Our results show that
there are significant differences between the accuracy of the two approaches. As is
confirmed by the simulations, all the results on the sample sizes computed using our
TDT Power Calculator when the parental disease status is considered are much more
accurate. For the first case of dominant inheritance considered in Whittaker and Lewis
[1998], the sample sizes given by their analytical approach for 80% power can often
yield 90% power in simulations. These results indicate that Whittaker and Lewis’s
analytical approach [1998] is inaccurate and overestimates the required sample sizes.

Multiplex Families

TDT Power Calculator can be employed to demonstrate the effect of the number
of children on the power of the TDT (Fig. 1). The larger number of affected children
from each family can help increase the power, particularly when the required sample
size is huge and the number of affected children in each family is small. However, the
increasing rate is not linear. For example, in the recessive situation in Figure 1, when
families with three affected children are recruited, the sample size is reduced more
than 150 times comparing with the required number of families with SAO. Our obser-
vations show that, usually, if unaffected children exist in the nuclear families, the power
will be lower than when there are less or no unaffected children.

Families with Different Structure

In practice, families of different structures can be recruited. Table IV shows when
there are several family structures to be considered in the TDT power computation, our
approach is still quite accurate. Our study developed the first approach for computing
the power of the TDT in practice with nuclear families of mixed structures.

DISCUSSION

In this paper, we develop a general and highly accurate approach to compute
analytically the power of the TDT. We compare the results computed from our ap-
proach with those from several other recent papers, both against the results obtained
by computer simulations. We show that the results computed with our approach are
more accurate than (sometimes significantly) or at least the same as those derived
from other approaches. More importantly, our approach can handle various situa-
tions, which include (1) families that consist of any number of children with any
configuration of affected and nonaffected sibs; (2) families ascertained through the
affection status of parent(s); (3) any mixed sample with different types of families in
(1) and (2); (4) the marker locus is not a DSL; and (5) existence of allelic heteroge-
neity. To date, our approach is the most accurate and most general one for the ana-
lytical power computation of the TDT. We implement this approach in a user-friendly
computer program, TDT Power Calculator.

Many alternative approaches to mapping disease genes are available for empiri-
cal geneticists. They include the model-based linkage analyses, model-free linkage
analyses (the allele sharing approach), variance component analyses, case-control
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Fig. 1. The effect of the number of children on the power of the TDT. The allele frequency of the
marker and the disease susceptibility is 0.4 and 0.05, respectively. No recombination occurs between
the marker and the DSL. Linkage disequilibrium is 0.8 of its maximum. The penetrances under various
genetic models are, respectively, as following: multiplicative model, 0.625, 0.25, and 0.1; recessive
model, 0.9, 0.1, and 0.1; additive model, 0.85, 0.5, and 0.15; and dominant model, 0.5, 0.5, and 0.2.
The disease prevalences are 0.12, 0.10, 0.19, and 0.23, respectively. The significance level is 0.001 and
the power is 0.8. The total number of children per nuclear family is given on the X-axis. Families with
none, one, and two unaffected children are indicated by different dots and lines. The number of af-
fected children in each type of nuclear families can be inferred from the data on X-axis and the number
of unaffected children in nuclear families as indicated by different types of dots.
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studies, TDT and model-based association studies, etc. [Elston, 1998]. Which method
to choose in a specific genetic study is a practical question that empirical geneticists
have to face. To answer this kind of practical questions, accurate and general meth-
ods for power computation for different DSL searching approaches should be devel-
oped and made user-friendly. The approach and the program developed here should
be significant for theoreticians to investigate accurately the statistical power of the
TDT in various situations, and for empirical geneticists to efficiently plan studies
using the TDT.

Usually, for an inaccurate approximation approach, the sample size computed
analytically may significantly deviate from true sample size, especially under the
following situations: (1) low disease prevalence; (2) low frequency of the disease
susceptibility allele(s); (3) high genotypic relative risk; and/or (4) small sample sizes.
Tables I–IV show that our approximation is quite robust and accurate even in the
above situations. Further investigations at a more standard significance level (larger
than 5*10–8) show that the approximation in our methods works well across the whole
distribution of the TDT statistic. For example, in the second situation of the multipli-
cative model in Table III (where the required sample size is 806), we investigated
the significance levels of 0.1, 0.05, 0.005, 0.001, 0.0001, and 5*10–8, respectively.
With sample sizes of 125, 159, 270, 346, 455, and 806, the simulated powers with
100,000 simulations are 0.800, 0.800, 0.800, 0.801, 0.802, and 0.801 respectively,
and the analytical powers are 0.801, 0.801, 0.801, 0.800, 0.799, and 0.800, respec-
tively. It shows that, under different significance levels, the analytical powers are
very close to the simulated power and hence highly reliable.

TDT Power Calculator has many other potential utilities that can be explored.
For example, employing TDT Power Calculator, it is easy to find that the TDT picks
up additive effects in the penetrances and hence the TDT study under additive model
of inheritance (MOI) has greater power than that in other MOIs. This phenomenon is
also apparent in Tables II and IV, and Figure 1. With the TDT Power Calculator, by
examing the simulated type I errors, one can easily verify that (1) the TDT is always
a valid test for linkage in the presence of linkage disequilibrium; (2) the TDT is a
test for both linkage and linkage disequilibrium if there is only one affected child in
each nuclear family; and (3) the TDT is not a valid test for association if multiple
affected children are recruited in a family.
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APPENDIX: IMPROVED ALGORITHM WITH FAMILY CLASSIFICATION

Classes are defined by (ui, vi). For simple demonstration, we consider a two-
allele marker locus. Denote one marker allele as M (or 1 in Tables AI–AII), the other
alleles as m (or 0 in tables). There are a total of three informative parental mating
types: Mm*MM, Mm*mm, and Mm*Mm.

First, let’s consider a simple situation (Table AI) that the disease status of both
parents in each nuclear family is the same, i.e., AA, NN, or XX. Focus on nuclear
families with the parental mating type Mm*MM. Among t children, there are k af-
fected with the marker genotype MM (denoted as 11) and (a-k) affected children
with Mm genotype (denoted as 10). In our notation, orders of alleles and individuals
are considered so that the first allele of a genotype comes from the first parent. Here
is a specific example in Table AII: 1011(11)k(01)a-k , which denotes that the marker
genotype(s) of the first parent, the second parent, the first k affected children and the
last affected a-k children are Mm, MM, MM and mM, respectively. There are 4Ck

a

such kind of families. This is because there are Ck
a combinations of children’s geno-



66 Chen and Deng

types and disease status given a specific order of the parents, and there are 4 possible
configurations (10*11, 01*11, 11*10, 11*01) of the parents with the genotype
Mm*MM.

The probability of the set of marker genotypes in a nuclear family provided the
specific family disease status is denoted as Pr(GM|family disease status). In the above
example, the probabilities among the kinds of families are the same. Therefore, the
total probability that this type of families contributes to a class with (ui, vi) being (k,
a-k) is

Pr(GM|family disease status)*4Ck
a (A1)

The following is a general approach to compute the probabilities of the set of
marker genotypes given specific family disease statuses. We do not consider the
marker genotypes of unaffected sibs here because they do not contribute to ui and vi.
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Table AI. Classification of Families With the Same Parental Affection Status

GM         ui       vi         Freq         Range

1011(11)k(01)a-k k a-k 4Ca
k 0 = k = a

1000(10)k(00)a-k k a-k 4Ca
k 0 = k = a

1010(11)k1(10)k2(01)k3(00)k4 2k1+k2+k3 k2+k3+2k4         4a! 0 = k1, k2, k3, k4 = a

k1! k2 ! k3 ! k4 k1+ k2 + k3 + k4 = a
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The denominator can be computed as the summation of the numerators for all pos-
sible marker genotypes.

Thus, the probability of a class can be obtained. ui and vi, the count that M
alleles are transmitted or not transmitted from marker heterozygous parents to af-
fected children, are also given in Table AI. Following this improved algorithm with
family classification, the computational time is reduced substantially, from an expo-
nential function to a linear function of the number of affected children.

If the two parental affection statuses are different, enumeration can be performed
as in Table AII. Minor changes need to be made in Formula (A1) only.

Table AII. Classification of Families With Different Parental Affection Status

GM          u         v       Freq          Range

1011(11)k(01)a-k k a-k 2Ca
k 0 = k = a

1110(11)k(10)a-k k a-k 2Ca
k 0 = k = a

1000(10)k(00)a-k k a-k 2Ca
k 0 = k = a

0010(01)k(00)a-k k a-k 2Ca
k 0 = k = a

1010(11)k1(10)k2(01)k3(00)k4 2k1 + k2 +k3 k2 + k3 +2k4         4a! 0 = k1, k2, k3, k4 = a
k1 ! k2 ! k3 ! k4 k1 + k2 +k3 + k4 = a
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