
Abstract The transmission disequilibrium test (TDT)
has been employed to map disease susceptibility loci
(DSL), while being immune to the problem of population
admixture. The customary TDT test (TDTD) was devel-
oped for affected child(ren) and their parents and was
most often applied to case-parent trios. Recently, the TDT
has been extended to the situations when (1) parents are
not available but affected and nonaffected sibs from each
family are available, (2) unrelated control-parent trios are
available for combined analyses with case-parent trios
(TDTDC), and (3) large pedigrees. For many diseases, af-
fected children in the case-parent trios enlisted into the
TDTD have unaffected sibs who can be recruited. We pre-
sent an extension of the TDT by effectively incorporating
one unaffected sib of each of the affected children in the
case-parent trios into a single analysis (TDTDS, where DS
denotes discordant sib pairs). We have developed a gen-
eral analytical method for computing the statistical power
of the TDTDS under any genetic model, the accuracy of
which is validated by computer simulations. We compare
the power of the TDTD, TDTDC, and TDTDS under a range
of parameter space and genetic models. We find that the
TDTDS is generally more powerful than the TDTDC and
TDTD, particularly when the disease is prevalent (>30%)

in the population. The relative power of the TDTD and the
TDTDS largely depends upon the allele frequencies and
genetic effects at the DSL, whereas the recombination
rate, the degree of linkage disequilibrium, and the marker
allele frequencies have little effect. Importantly, the
TDTDS not only may be more powerful, it also has the ad-
vantage of being able to test for segregation distortion that
may yield false linkage/association in the TDTD.

Introduction

Complex diseases refer to diseases determined by multi-
ple genetic and environmental factors (and potentially
their interactions). Linkage disequilibrium (LD) is an im-
portant mechanism to identify genes underlying diseases
(e.g., Hastbacka et al. 1992, 1994; Xiong and Guo 1997;
Deng et al. 2000). Association studies that depend on LD
between markers and disease genes have helped to deci-
pher some genetic basis of differential susceptibility to
complex diseases (e.g., Feder et al. 1996). Regular associ-
ation studies, usually, case-control analyses in unrelated
cases and controls may suffer inflated type I errors
(Chakraborty and Smouse 1988; Lander and Schork 1994;
Weir 1996; Spielman and Ewens 1996) that have not been
quantified until recently (Deng and Chen 1999; Deng et
al. 2001a). In addition, population admixture/stratification
may mask or reverse true genetic effects in classical asso-
ciation studies (Deng 2001). Approaches employing nu-
clear families such as the transmission disequilibrium test
(TDT; Spielman et al. 1993) were explicitly proposed to
map disease susceptibility loci (DSL). The TDT (Spiel-
man et al. 1993) was developed to control for population
admixture/stratification in testing for linkage and/or asso-
ciation between marker loci and DSL.

When parental genotypes are available, the customary
TDT analyses only employ affected children and their
parents (with at least one parent being heterozygous at the
marker locus). Samples commonly used are case-parent
trios, i.e., nuclear families with one affected child and
both parents. We will denote the customary TDT applied
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to case-parent trios as TDTD, where the subscript D de-
notes affected children with the disease under study in the
trios. Recently, the TDT has been extended to: (1) nuclear
families with multiple children (with at least one affected
and one unaffected child) where parents are not available
(Horvath and Laird 1998; Spielman and Ewens 1998;
Boehnke and Langefeld 1998; Knapp 1999); (2) com-
bined samples (TDTDC) of case-parent trios and unrelated
control-parent trios (Deng and Chen 2001); (3) general
pedigrees (Martin et al. 2000, 2001). It is generally neces-
sary to recruit unrelated control-parent trios in order to
rule out segregation distortion and validate significant re-
sults in the TDTD (Spielman et al. 1993). We (Deng and
Chen 2001) have previously demonstrated that combined
analyses (TDTDC) of case-parent trios and unrelated con-
trol-parent trios is not only useful for detecting segrega-
tion distortion (which is necessary), but also can increase
the mapping power of the TDT (sometimes, dramatically
so).

For many diseases, it is generally easy to obtain unaf-
fected sibs for the affected children in the case-parent
trios. This is because, for most genetic diseases, the sib re-
currence risk is less than 0.5 and, for complex diseases, is
usually much lower (Boehnke and Langefeld 1998). If we
recruit one unaffected sib for each of the affected children
in the case-parent trios, we can form discordant sib-pair-
parent tetrads. It is intuitive that such discordant sib-pair-
parent tetrads are amenable for TDT type analyses to test
for linkage and/or association between markers and DSL,
just like the case-parent trios. This is because, if the
marker locus under test is a DSL or is linked to and is in
LD with a DSL, transmission disequilibrium should occur
from heterozygous parents not only to affected children,
but also to the nonaffected sibs of the affected children.
The direction of the transmission disequilibrium should
be opposite if a DSL is involved and should be the same
if segregation distortion is involved. Therefore, discordant
sib-pair-parent tetrads should be able both to test linkage
and/or LD and to test segregation distortion (see Discus-
sion). Compared with the TDTDC analyses that employ
case-parent trios and unrelated control-parent trios, geno-
typing in the TDTDS that is based on discordant sib-pair-
parent tetrads is much reduced for the same number of af-
fected and nonaffected children in analyses. This is sim-
ply because the discordant sib pairs share both parents. In
addition to this advantage of reduced genotyping, we will
show, in this paper, that the TDTDS is generally more pow-
erful than the TDTDC and can be frequently more power-
ful than the TDTD. Similar to the TDTDC, the TDTDS can
also test for the segregation distortion that may plague the
results of the TDTD.

In this article, we will first present the TDTDS test that
applies to discordant sib-pair-parent tetrads with at least
one parent being heterozygous at the marker locus to test
for linkage and/or association. Second, we will develop a
general analytical method for computing the statistical
power of the TDTDS and the TDTD. We will validate the
accuracy of our power computation method by computer
simulations. Finally, under a range of parameter space and

genetic models, we will compare the relative powers of
the TDTD, TDTDC, and TDTDS. In the following, we will
assume that segregation distortion is absent (see Discus-
sion).

Materials and methods

Statistical tests

For simple illustration, we consider a two-allele-per-locus model
at the marker locus having alleles M and m and at a DSL with al-
leles A and a. This model applies to the data from genetic markers
such as single nucleotide polymorphisms and restriction fragment
length polymorphisms. For a locus with more than two alleles,
such as microsatellite markers, multiple alleles can always be clas-
sified into two alleles by designating one (or some) as M and the
rest, collectively, as m. In practice, collapsing of multiple alleles
into two alleles is not always straightforward, since it is an open
question as to which alleles are to be grouped as one allele. Inap-
propriate collapsing may involve some loss of information. The
two-allele model can be extended to account for multiple alleles
(Sham and Curtis 1995; Schaid 1996; Spielman and Ewens 1996;
Kaplan et al. 1997; Lazzeroni and Lange 1998); this will be pur-
sued in our future studies. The extension can be generally accom-
plished by testing for global allelic transmission disequilibrium for
all alleles instead of two alleles at a time. Therefore, our investiga-
tion via the simple two-allele model should be of general signifi-
cance and forms a basis for future extensions to more complex sit-
uations.

In the TDTD (Spielman et al. 1993) applied to case-parent trios
(with at least one heterozygous parent), let T and NT denote, re-
spectively, the number of times that the marker allele M is trans-
mitted or not transmitted from heterozygous parents to affected
children. Under the null hypothesis of no linkage or no LD be-
tween the marker locus and a DSL, the statistic

χ 2
T DTD

= (T − NT )2

T + NT
,

approximately follows a χ2-distribution with one degree of free-
dom (d.f.).

For the TDTDC (Deng and Chen 2001) applied to case-parent
trios and unrelated control-parent trios (with at least one parent be-
ing heterozygous in each family trio), let n1. denote the total num-
ber of M and m alleles transmitted from heterozygous parents to
affected children; n2. is similarly defined for unaffected children.
Let T1 and NT1 denote, respectively, the numbers of times that the
marker allele M is transmitted and not transmitted from heterozy-
gous parents to unaffected children in the control-parent trios. Let
n.1 denote the number of M alleles transmitted from heterozygous
parents to affected and nonaffected children; n.2 is similarly de-
fined for the m allele. The total number of alleles transmitted to all
children is n0. Table 1 illustrates the representation of these ns. The
statistic

χ 2
T DTDC

= n0 (T ∗ NT 1 − T1 ∗ NT )2

n1.n2.n.1n.2

approximately follows a χ2-distribution with 1 d.f. under the null
hypothesis of no linkage or no LD between the marker locus and a
DSL (Deng and Chen 2001). Note that asterisks in the equations
indicate multiplication throughout.

For the TDTDS that employs discordant sib-pair-parent tetrads
(with at least one parent being heterozygous), we can construct our
χ 2

T DTDS
statistic similar to χ 2

T DTDC
. The difference is that unrelated 

control-parent trios are replaced by unaffected sibs, one for each of 
the affected children in the case-parent family trios. The discordant
sibs have the same parents. Let n′

2. denote the total number of alle-
les (M and m alleles) transmitted from heterozygous parents to un
affected sibs in the tetrads. Let T1

′ and NT 1
′ denote, respectively,

the numbers of times that the marker allele M is transmitted and

452



not transmitted from heterozygous parents to unaffected sibs in the
discordant sib-pair-parent tetrads. Let n′

.1 (n′
.2) denote the total num-

bers of M (m) alleles transmitted from heterozygous parents to af-
fected AND nonaffected sibs. The total number of alleles transmit-
ted to all the sibs is n0’. Table 1 illustrates the representation of n’s.
The statistic

χ 2
T DTDS

= n′
0

(
T ∗ N ′

T 1 − T ′
1 ∗ NT

)2

n1.n′
2.n

′
.1n′

.2

approximately follows a χ2-distribution with 1 d.f. under the null
hypothesis of no linkage or no LD between the marker locus and a
DSL.

Under the alternative hypothesis of linkage and LD between
the marker locus and a DSL, χ 2

T DTD
, χ 2

T DTDC
, and χ 2

T DTDS
each ap-

proximately follows a non-central χ2-distribution with 1 d.f. and 
their respective noncentrality parameters being λT DTD , λT DTDC , and 
λT DTDS . These noncentrality parameters are essential for our ana-
lytical approach to compute and compare the statistical power of 
the TDTD, TDTDC, and TDTDS. λT DTD (for the TDTD applied to 
randomly ascertained case-parent trios) and λT DTDC have been de-
veloped earlier (Deng and Chen 2001). λT DTDS and λT DTD (for the 
TDTD applied to the case-parent trios that are ascertained from the
discordant sib pair-parent tetrads) will be developed in the next
sub-section for our analytical power computation.

Power computation

Let p and q (=1–p) denote, respectively, the frequencies of alleles
A and a at a DSL. Let f and f’ (=1–f) denote, respectively, the fre-
quencies of alleles M and m at a marker locus. Let δ denote the LD
coefficient for the marker locus and a DSL, and θ denote the re-
combination rate between the marker locus and a DSL. The popu-
lation haplotype frequencies are, respectively, PAM=δ+pf, PaM=
f–PAM, PAm=p–PAM, and Pam=1–f–p+PAM. Let φAA, φAa, and φaa de-
note the penetrance (the probability of being affected) of the geno-
types AA, Aa, and aa, respectively, at the DSL. This is a general
model of within-locus genetic effects at a DSL. Corresponding to
the GRR (genotypic relative risk) model that is commonly em-
ployed (e.g., Risch and Merikangas 1996), we can define φAA=γ1φaa
and φAa=γφaa by utilizing the notations of γ1 and γ in the GRR
model. In the GRR model, on some scales, φaa=1. The GRR model
is useful when computing the power of the TDTs that employ af-
fected children only without consideration of nonaffected children,
as the parameter φaa will appear as an independent parameter in the
analytical power computation (Deng and Chen 2001). For reces-
sive genetic effects at a DSL, γ=1; for additive genetic effects,
γ1=2γ–1; for dominant effects, γ1=γ; and for multiplicative effects,
γ1=γ 2.

Statistical powers of different tests can be investigated and
compared by one of the two indices. The first is the probability of
rejecting a null hypothesis given a certain sample size at a speci-
fied significance level α. The second is the sample size needed to
achieve a given power η at a given α. We will choose the second
index for this investigation, as the sample size can be unbounded

for a statistical power of nearly 100% if the sample exceeds a cer-
tain size.

Given the parameters p, f, a, η, θ, δ, φAA, φAa, and φaa, let us as-
sume that we have N informative nuclear families of the discordant
sib-pair-parent tetrads and N case-parent trios are ascertained from
the N tetrad families (by only choosing the affected child and the
parents from each tetrad family). “Informative nuclear families”
refer to those with at least one parent being heterozygous at the
marker locus. Only families with one affected child and one unaf-
fected child are sampled, together with their parents. Investigation
of the TDT applied to other types of nuclear families, including
those specially ascertained through affected status of one or sev-
eral family members, has been pursued elsewhere (Chen and Deng
2001). For the discordant sib pair-parent tetrads, we will derive the
computation methods for and λT DTDS and λT DTD for the TDTDS and
TDTD (applied to the case-parent trios ascertained from the
tetrads). Let Pr(M, Mm | D1=D, D2=C) be the probability that, on
condition that one child (D1) is affected (denoted by D) and the
other child (D2) is nonaffected (denoted by C), a parent heterozy-
gous at the marker locus transmits the M allele to the affected
child. Pr(m, Mm | D1=D, D2=C) is similarly defined for the trans-
mission of the m allele. The order of children or parents in a tetrad
family is not important and is only for notational convenience in
the derivation. Among the tetrad families sampled, we denote the
affected child as the first child when we derive the probability
Pr(M, Mm | D1=D, D2=C). The expected numbers of M and m al-
leles transmitted from marker heterozygous parents to affected
children in the tetrad families are, respectively,

E (T ) = 2N Pr (M, Mm|D1 = D, D2 = C) , (1)

E (NT ) = 2N Pr (m, Mm|D1 = D, D2 = C) . (2)

Let G PMm
i denote the DSL genotype of the parent who is heterozy-

gous at the marker locus. For simplicity, let this parent be the first
parent. The two-locus genotype (at the DSL and the marker locus)
of this parent G PMm

i may then be (MA, mA), (MA, ma), (Ma, mA),
(Ma, ma), respectively, for i=1, 2, 3, 4, where MA, etc. denote the
haplotypes at the marker locus and the DSL. G Pi

j denotes the geno-
type of the ith parent (i=1, 2) in a tetrad family at the DSL. The su-
perscripts P and O (to appear later) denote the parental and child
generation, respectively. Let G Pi

j be AA, Aa, aA, aa, respectively,
when j=1, 2, 3, 4 for the ith parent. Then, in the discordant sib-
pair-parent tetrads,

Pr (M, Mm|D1 = D, D2 = C)

= Pr (D1 = D, D2 = C, M, Mm) / Pr (D1 = D, D2 = C)

=
4∑

i=l

4∑
j=l

Pr
(

D1 = D, M, D2 = C |G PMm
i , G P2

j

)

Pr
(

G PMm
i , G P2

j

)
/ Pr (D1 = D, D2 = C)

(3)

=

4∑
i=l

4∑
j=l

Pr
(

D1 = D, M |G PMm
i , G P2

j

)

Pr
(

D2 = C |G PMm
i , G P2

j

)
Pr

(
G PMm

i

)
Pr

(
G P2

j

)
4∑

i=l

4∑
j=l

Pr
(

D1 = D|G P1
i , G P2

j

)

Pr
(

D2 = C |G P1
i , G P2

j

)
Pr

(
G P1

i

)
Pr

(
G P2

j

)

Define the matrices 

	D =
(

φA A φAa

φAa φaa

)
, 	C =

(
1 − φA A 1 − φAa

1 − φAa 1 − φaa

)
,

and P P O =
(

1 1/2 1/2 0
0 1/2 1/2 1

)
.

The numbers in the first row of the PPO are the probabilities that
the parents of the genotypes AA, Aa, aA, aa transmit the A allele
to a child. The numbers for the second row of the PPO are similarly
defined for the transmission of the a allele to a child from the par-
ents of the genotypes AA, Aa, aA, aa, respectively. The probabil-
ity that the second child is unaffected given that the parents are of
the ith and jth genotypes is
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Table 1 Denotations of the number of alleles transmitted to af-
fected and nonaffected children (unrelated numbers in TDTDC an-
alyses for the unrelated control-parent trios, sib numbers in TDTDS
analyses for the unaffected sibs in the discordant sib pair-parent
tetrads)

Number of alleles transmitted

M m Total

Affected T NT n1.

Unaffected (unrelated/sib) T1/T1
′ NT 1/NT 1

′ n2./n
′
2.

Total (unrelated/sib) n.1/n
′
.1 n.2/n

′
.2 n0/n

′
0



Pr
(

D2 = C |G P1
i , G P2

j

)

=
2∑

i2=l

2∑
j2=l

Pr
(

D2 = C, G O2
i2

G O2
j2

|G P1
i , G P2

j

)

=
2∑

i2=l

2∑
j2=l

Pr
(

D2 = C |G O2
i2

G O2
j2

)
Pr

(
G O2

i2
|G P1

i

)
Pr

(
G O2

j2
|G P2

j

)

= (
P P O

)T

.i
	C

(
P P O

)
. j

(4a)

where (PPO).i and (PPO).j are, respectively, the ith and jth columns
of the matrix PPO and T denotes a matrix transposition. G O2

i2
de-

notes the DSL allele received by the second (unaffected) child 
from the parent of the genotype G P1

i at the DSL, and G O2
j2

is simi-
larly defined for the DSL allele received by the second (unaf-
fected) child from the parent of the genotype G P2

j at the DSL. Sim-
ilarly, the probability that a child (the first) is affected given the 
parental genotypes at the DSL being G P1

i and G P2
j is

Pr
(

D1 = D|G P1
i , G P2

j

)
= (

P P O
)T

.i
	D

(
P P O

)
. j

. (4b)

Define a matrix P P OM =
(

1/2 (1 − θ) /2 θ/2 0
0 θ/2 (1 − θ) /2 1/2

)
. 

The first and second rows of the P P OM are, respectively, the prob-
abilities that the parents of the two-locus genotypes (heterozygous
at the marker locus) (MA, mA), (MA, ma), (Ma, mA), (Ma, ma)
transmit M and A alleles (first row) and M and a alleles (second
row) to his/her child. Then, the probability that the first parent is a
marker heterozygote Mm and the affected child receives the M al-
lele from the first parent given that the parents are of the ith and jth
genotypes at the DSL is

Pr
(

D1 = D, M |G PMm
i , G P2

j

)

=
2∑

i1=l

2∑
j1=l

Pr
(

D1 = D, G O1
Mi1

G O1
j1

|G PMm
i , G P2

j

)

=
2∑

i1=l

2∑
j1=l

Pr
(

D1 = D|G O1
Mi1

G O1
j1

)
Pr

(
G O1

Mi1
|G PMm

i

)
Pr

(
G O1

j1
|G P2

j

)

= (
P P OM

)T

.i
	D

(
P P O

)
. j

where G O1
Mi1

denotes the allele at the DSL received by the first (af-
fected) child from the the first parent that is of genotype G PMm

i at 
the DSL. G O1

j1
denotes the allele at the DSL received by the first 

(affected) child from the second parent that is of genotype G P2
j at 

the DSL. Recall that G PMm
i denotes the DSL genotype of the first 

parent heterozygous at the marker locus; the probability that a
child is unaffected given that the first parent (P1) is of genotype 
G PMm

i at the DSL and the second parent is of the jth genotype at the 
DSL is

Pr
(

D2 = C |G PMm
i , G P2

j

)
= Pr

(
D2 = C |G P1

i , G P2
j

)
(5b)

Substituting Equations 4–5 into Equation 3, we have

Pr (M, Mm|D1 = D, D2 = C) =
(
G PMm

)T
�Dm G P2(

G P2
)T

�G P2

, (6a)

where, the ijth element of the 4×4 matrices ΨDm and Ψ are, re-
spectively,

�Dmi j = (
P P OM

)T

.i
	D

(
P P O

)
. j

(
P P O

)T

.l
	C

(
P P O

)
. j

,

�i j =
2∏

k=l

(
P P O

)T

.l
	k

(
P P O

)
. j

, where 	1 = 	D and 	2 = 	C .
(6b)

(
G P2

)T
is a row vector of the frequencies of the genotypes AA, Aa, 

aA, and aa, respectively. 
(
G PMm

)T
is a row vector of the frequen-

cies of the two-locus genotypes (MA, mA), (MA, ma), (Ma, mA),
(Ma, ma), respectively. Although not necessary for the validity of
the TDT tests, if we assume Hardy-Weinberg equilibrium in the
study population (for ease of power computation), we have
(
G P1

)T = (
G P2

)T = (
p2 pq pq q2

)
,(

G PMm
)T = (2PAM PAM 2PAM Pam 2PaM PAm 2PaM Pam)

Similarly, it can be shown that the probability that, in the discor-
dant tetrad families, a parent heterozygous at the marker locus
transmits the m allele to the affected child (denoted as the first one
for notational convenience) is

Pr (m, Mm|D1 = D, D2 = C) =
(
G PMm

)T
�Dm G P2(

G P2
)T

�G P2

(6c)

where, the ijth element of the 4×4 matrix ΨDm is:

�Dmi j = (
P P Om

)T

.i
	D

(
P P O

)
. j

(
P P O

)T

.i
	C

(
P P O

)
. j

, (6d)

and P P Om =
(

1/2 θ/2 (1 − θ) /2 0
0 (1 − θ) /2 θ/2 1/2

)
. The numbers 

in the first and second rows of P P Om are, respectively, the proba-
bilities that the parents of the two-locus genotypes (heterozygous
at the marker locus) (MA, mA), (MA, ma), (Ma, mA), (Ma, ma)
transmit m and A (first row) and m and a (second row) alleles to
his/her child.

Equations 6a and 6c can be used to calculate E(T) and E(NT)
(Equations 1 and 2). Hence, under a specified significance level α
and a specified statistical power η, the sample size for the TDTD
applied to the case-parent trios formed from the discordant sib-
pair-parent tetrads can be computed from the noncentrality param-
eter

λT DTD = [E (T ) − E (NT )]2

E (T ) + E (NT )
, (7)

by using the numerical procedures adopted and detailed in Deng et
al. (2001a) and Deng and Chen (2001).

Let Pr(M, Mm|D1=C,D2=D) and Pr(m, Mm|D1=C,D2=D) be the
probabilities that, conditional on that one child (D1) is unaffected
and the other child (D2) is affected, a parent heterozygous at the
marker locus transmits M and m alleles, respectively, to the unaf-
fected child. It can be shown as above that

Pr (M, Mm|D1 = C, D2 = D) =
(
G PMm

)T
�C M G P2(

G P2
)T

�G P2

(8a)

Pr (m, Mm|D1 = C, D2 = D) =
(
G PMm

)T
�Cm G P2(

G P2
)T

�G P2

(8b)

The matrices ΨCM and ΨCm are computed in the same way as that
for the ΨDM and ΨDm, except that ΦC and ΦD are exchanged in
Equations 6b and 6d. Then, in Table 1,

E
(
T ′

1

) = 2N Pr (M, Mm|D1 = C, D2 = D) , (9a)

E
(
N ′

T 1

) = 2N Pr (m, Mm|D1 = C, D2 = D) . (9b)

The sample size needed under a specified significance level α and
a specified statistical power η for the TDTDS can be computed
from the noncentrality parameter

λT DTDS =

E
(
T + NT + T ′

1 + N ′
T 1

)
(
E (T ) E

(
N ′

T 1

) − E
(
T ′

1

)
E (NT )

)2

E (T + NT ) E
(
T ′

1 + N ′
T 1

)
E

(
T + T ′

1

)
E

(
N T + N ′

T 1

)
, (10)

by using the numerical procedures adopted and detailed in Deng et
al. (2001a) and Deng and Chen (2001). The computation can be
implemented easily with the aid of some computer programming.
A computer program written in C++ is available from the authors
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upon request. It can be shown with some additional algebra that
λT DTDS has multiplicative factors of (1/2–θ) and δ so that λT DTDS is
zero under the null hypothesis of no linkage or no LD between the
marker locus and the DSL. Hence, TDTDS should not suffer in-
flated type I error rates in the presence of population admixture, as
confirmed in our computer simulations.

To validate all the above derivations and our analytical power
computation for the TDTD (applied to the case-parent trios ascer-
tained from the discordant sib-pair-parent tetrads) and the TDTDS
from the noncentrality parameters (Equations 7 and 10), we per-
form computer simulations. The validation of our power computa-
tion that is based on the complex analytical derivation by computer
simulations is necessary, particularly given that an approximation
of the test statistics to the χ2-distribution is used. In the absence of
segregation distortion, random-mating populations are simulated,
in which p, γ1,γ, and φaa are specified together with f, δ, and θ
(when the marker locus is not a DSL per se). Note, random mating
is not necessary for the validity of the TDT analyses that control
for population admixture by nuclear families (Ewens and Spielman
1995). For a desired statistical power η and a specified signifi-
cance level α, we first compute the sample size (N) needed by our
analytical power computation method. Then N discordant sib-pair-
parent tetrads are simulated. The TDTDS is applied to the N tetrad
families. The simulation and analysis program for this study was
developed by the authors and is available upon request. The simu-
lation procedures are relatively straightforward and have been de-
tailed elsewhere (e.g., Deng et al. 2001b; Deng and Chen 2001)
and thus will not be elaborated here. Briefly, for the tetrad fami-
lies, parental genotypes are first simulated based upon the popula-
tion frequencies of genotypes. For those parents with at least one
of whom being heterozygous at the DSL under study, genotypes of
children (two from each family) are simulated based upon parental
genotypes. The phenotypes are then simulated based upon the
genotype-specific penetrances. The families with discordant sib
pairs are used for subsequent analyses. In simulations, the random
number generator that we used is as given by Park and Miller
(1988) and the random number seed is the time to seconds of the
computer clock at the time that the simulations are started. The sta-
tistical power η’ obtained in simulations under the significance
level α can be compared with the specified level of η in the ana-
lytical power computation. The closer that η’ is to η, the more ac-
curate is our analytical power computation. The analytical power
computation for the TDTDC was derived and validated previously
(Deng and Chen 2001). Once our analytical power computation for
the TDTDS and TDTD is validated by computer simulation, the in-

vestigation of the relative power of the TDTDS, TDTD, and TDTDC
will be conducted by our analytical method.

Results

Accuracy of our analytical power computation

Table 2 presents some representative data of our extensive
simulation studies for a range of parameters. It can be
seen that the sample sizes (N) computed from our analyt-
ical method under a specified statistical power (η), if em-
ployed in computer simulations, can yield a simulated sta-
tistical power (η’) that is very close to η. Therefore, the
accuracy of our analytical derivation and the power com-
putation for the TDTDS and TDTD (applied to family trios
each with an affected child ascertained from the family
tetrads with discordant sibs) is validated by our computer
simulations. Simulation results not shown here for other
genetic models and parameter values (including those em-
ployed in Figs. 1, 2, 3, 4) show a similar accuracy of our
analytical power computation to that presented in Table 2.

Validity of the TDTDS

Table 2 presents some results of the simulated signifi-
cance levels a’ under the null hypothesis that the marker
locus is not linked to and/or is not in LD with a DSL for
the TDTDS. It can be seen that, for various genetic effects
at the DSL, the simulated significance level is essentially
equal to the specified significance level α=0.01, except
the minor differences caused by sampling. Therefore, the
TDTDS as a test statistic approximated by a χ2-distribution
with 1 d.f. is valid and robust in that the significance level
achieved is the about same as that specified in the TDTDS
testing. Data not presented here for other parameter val-
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φaa φAA=φAa φ TDTD’ TDTDS (η’, α’) TDTD(η’, α’) PDT

0.1 0.2 0.119 376 [1128] 546 (0.902, 0.012) [2184] 373 (0.901, 0.010) [1119] 366 (0.904) [1464]
0.2 0.4 0.238 376 [1128] 384 (0.904, 0.009) [1536] 388 (0.895, 0.009) [1164] 325 (0.900) [1300]
0.3 0.6 0.357 376 [1128] 249 (0.906, 0.009) [996] 410 (0.894, 0.010) [1230] 283 (0.896) [1132]
0.4 0.8 0.476 376 [1128] 140 (0.907, 0.011) [560] 450 (0.899, 0.008) [1350] 222 (0.901) [888]

Table 2 The number of nuclear families (N) needed to achieve
90% power η with α=0.01 computed by our analytical methods,
and the power (η’) obtained by simulations with the sample size N.
In the studies for this table, dominant effects are assumed, γ1=γ=2,
and the locus under test is a DSL per se and f=q. φaa is the geno-
typic penetrance for the referent genotype aa. The disease allele A
frequency p is 0.1. φ is the disease population prevalence and can
be computed by the p, γ1,γ, and φaa. To obtain the power η=90%
with the significance level α=0.01 for TDTDS and TDTD (applied to
the family trios selected from the family tetrads), sample size N is
calculated from the theoretical noncentrality parameters as indi-
cated in the Methods section. The simulated statistical powers (η’)
with sample size N are obtained by counting the times that the null
hypothesis is rejected in 10,000 repeated simulations performed
under the alternative hypothesis as specified; α’ is the type one er-
ror rate obtained in 10,000 simulations under the null hypothesis

that the marker is of no linkage or no LD with a DSL when speci-
fying the significance level α=0.01 by using the χ2-distributions to
the test statistics. TDTD is the classical TDT applied to family trios
each with an affected child selected from the family tetrads re-
cruited for the TDTDS. TDTD’ is the classical TDT applied to fam-
ily trios randomly ascertained. The results given for the TDTD’ is
obtained from our previous work (Chen and Deng 2001). The
numbers within brackets are for the individuals needed to be geno-
typed. The data for PDT is the simulated power of the PDT test of
Martin et al. (2000) as reflected by the number of nuclear family
tetrads with discordant sib pairs in order to achieve 90% power (η)
with α=0.01. Since the power computation and the validity of the
PDT and the TDTD’ has been substantiated by previous work, their
simulated type one error rates and the simulated power (for the
TDTD’) are not presented here



ues and genetic models have revealed the same conclu-
sion. In addition, the α’ for the TDTD applied to the fam-
ily trios (each with one affected child) selected from the
family tetrads (each with discordant sib pairs) also con-
firms to the specified α, so that the classical TDTD is valid
under the ascertainment.

General comparison of the TDTD and TDTDS tests

It is noted in Table 2 that, for the specified η and a, first,
the sample size N required for the TDTD applied to the

case-parent trios ascertained from the discordant sib pair-
parent tetrads increases with an increasing φaa and an in-
creasing population disease prevalence φ associated with
the change of φaa. This is an interesting contrast with the
finding (Deng and Chen 2001) that the power of the
TDTD applied to randomly ascertained case-parent trios is
not influenced by φaa and the associated change of φ. This
is largely because the expected frequencies of heterozy-
gous parent does not change with changing φaa in ran-
domly ascertained eligible case-parent trios but decreases
in the eligible case-parent trios ascertained from the eligi-
ble tetrad families (H.-W. Deng and W.-M. Chen, unpub-
lished). The information for the TDT largely resides in the
transmission of alleles from heterozygous parents to chil-
dren. With an increasing φaa, the TDTD becomes less pow-
erful with a decreasing number of heterozygous parents in
the case-parent trios ascertained from the discordant sib-
pair-parent tetrads. However, this is not the case (Deng
and Chen 2001; Table 1) when applying the TDTD to ran-
domly ascertained family trios each with an affected
child, a sampling scheme that is probably more often
adopted in practice when applying the TDTD.

Second, the N needed for the TDTDS test decreases
with an increasing φaa (and an increasing φ that is attribut-
able to the increase of φaa). This may be because, as the
disease becomes more prevalent, additional unaffected
children become more informative and the contrast be-
tween the affected and unaffected children becomes more
dramatic (for φ<0.5). Third, the power of the TDTDS rela-
tive to that of the TDTD increases with an increasing φaa
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Fig.1 The regions in the two dimensional parameter (p and φaa)
space in which the TDTDS is more powerful than the TDTD when
the marker locus is a DSL per se and p=f. In the comparison,
η=90% and α=10–7, although the choice of η and α is not impor-
tant for the purpose of comparison of different tests. The threshold
lines divide the parameter space into two parts. In the parameter
space to the upper right of the threshold lines, the sample size (N)
needed is smaller in the TDTDS than in the TDTD; thus, the TDTDS
is more powerful than the TDTD in this parameter region. In the
parameter space to the lower left of the threshold lines, it is the
other way around. The dashed lines set the upper limit for the max-
imum values that φaa can take with the constraint that the disease
population prevalence φ has to be less than 1.0. Under the multi-
plicative model, there are two dashed lines for γ=2 and 4, respec-
tively, and, under the other three models, there is only one dashed
line for γ=4. In the recessive model, γ1 is specified, and the pene-
trance for the genotypes AA, Aa, and aa are, respectively, γ1 φaa,
φaa, and φaa. For the other three models, γ is specified, and γ1 can
be easily inferred from γ and the genetic models under study



and the associated increasing φ. In the investigation for
Table 2, the TDTDS is always more powerful than the
TDTD once φaa exceeds 0.2 and φ exceeds 0.238. The dif-
ference of N for the TDTD and TDTDS can be so dramatic
that the sample size N needed for the TDTDS may be much
less than that for the TDTD, especially when the disease
prevalence is large (φ>0.36).

Detailed comparison of the TDTDS with the TDTD
and TDTDC, respectively

The relative power and the advantages and disadvantages
of the TDTD (applied to randomly ascertained case-parent
trios) and the TDTDC (applied to case-parent trios and un-
related control-parent trios) have been compared in detail
previously (Deng and Chen 2001). Therefore, we will fo-
cus on the comparison of the relative power of the TDTDS
with the TDTD and TDTDC, respectively. Since the rela-
tive magnitudes of the power of the TDTDS and TDTD
have been outlined under some parameters in Table 2, we
will focus on this subsection in the parameter regions in
which the power of the TDTDS is higher or lower than the
TDTD. Figure 4 gives more data for a comparison of the
relative power of the TDTDS and TDTD.

The comparison is made for the situation when the
marker locus is a DSL and p=f (Fig.1) and for the situa-

tion when the marker locus is not a DSL but is linked to
and is in LD with a DSL (Fig.2). When the marker locus
is a DSL and p=f (Fig.1), similar patterns emerge for all
the four genetic models investigated. First, there is a con-
tinuous threshold line in the parameter space so that, on
one side (the upper right side) of the threshold line, the
TDTDS is more powerful than the TDTD in that fewer
samples are necessary to reach the same statistical power
η for a given significance level α. On the other side (the
lower left side) of the threshold line, it is the other way
around. Second, φaa is critical in determining the relative
power of the TDTDS and the TDTD. For a p (the frequency
of the A allele at the DSL), with an increasing φaa, the
power of the TDTDS relative to that of the TDTD will in-
crease, and after a threshold value φaa, the power of the
TDTDS will be larger than that of the TDTD. The threshold
values of φaa decrease with the increasing within-locus
relative genetic effects as reflected by γ1 or γ. Third, p also
plays some role in determining the relative power of the
TDTDS and TDTD tests, although the role is not as impor-
tant as that of φaa, particularly under the dominant genetic
model. Similarly, for some φaa values, with an increasing
p, the power of the TDTDS relative to that of the TDTD
will increase, and after a threshold value p, the power of
the TDTDS will be larger than that of the TDTD. Again, the
threshold p value decreases with increasing within-locus
relative genetic effects as reflected by γ1 or γ. Therefore,
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Fig.2 The parameter space in
which the TDTDS is more pow-
erful than the TDTD when the
marker locus is not a DSL.
Five parameters p, f, θ, δ, and
φaa are investigated. The de-
fault parameters are φaa=0.1,
f=0.2, and the LD in population
δ=0.8 δmax, where δmax is the
maximum LD between the
marker and the DSL in a popu-
lation and can be easily shown
to be the minimum of pf’ and
qf. δ varies except in the lower
left plot where δ is fixed. In the
investigation of the allele fre-
quency at the DSL (p), three γ1
values (1.5, 2, and 4) are inves-
tigated, and in other cases, two
γ1 values (1.5 and 4) are inves-
tigated in combination with
two p values (0.01 and 0.5).
Under various models, γ can be
inferred easily from the φaa and
γ1 values (see text)



with larger γ1 or γ, or larger φaa, or larger p, the TDTDS is
more likely to be more powerful than the TDTD. It should
be noted that the larger the γ1 or γ, and/or the larger the
φaa, and/or the larger the p, the larger the disease popula-
tion prevalence φ. Even for low p values, the TDTDS can
often be more powerful than the TDTD. Finally, the ge-
netic model (dominant, recessive, etc.) at the DSL is im-
portant in determining the parameter space in which the
TDTDS is more powerful than the TDTD. This is apparent
when comparing the four plots in Fig.1 for the same pa-
rameters of γ1 or γ employed in the investigation.

When the marker locus is not a DSL, the conclusions
summarized above for the situations when the marker is a
DSL per se also hold. In Fig.2, in the parameter space to
the bottom of the threshold line, the TDTD is more power-
ful than the TDTDS. On the other side (the upper side) of
the threshold line, it is the other way around. In addition,
the marker allele frequency f, the recombination rate θ,
and the degree of LD (δ) between the marker locus and
the DSL all have little effect on the relative power of the
TDTDS and TDTD, although these parameters affect the
absolute values of the power of the TDTDS and TDTD.
This is demonstrated by using the recessive model, e.g., as
in Fig.2.

The TDTDS is more powerful than the TDTDC in the
majority of the parameter space (Fig.3). For a frequency

(p) of the disease allele A smaller than 0.5, which is prob-
ably true in almost all situations, the TDTDS is always
more powerful than the TDTDC. Only when φaa is rela-
tively small and p>0.5, may the TDTDC be more powerful
than the TDTDS.

The above analyses concentrate on parameter regions
in which the TDTDS is more powerful than the TDTD and
the TDTDC. In addition to the limited data in Table 2 and
to give a more quantitative indication of the relative
power of the TDTDS and the TDTD, we present, in Fig. 4,
the ratio of the sample size needed for the TDTDS and the
TDTD (applied to randomly ascertained family trios each
with an affected child) under various parameter values
and genetic models. It can be seen (Fig.4) that the re-
quired sample size for 90% power can sometimes be
much smaller for the TDTDS than the TDTD.

Discussion

By utilizing population LD, the TDT has been proposed
and employed to identify genes underlying complex traits,
while being immune to the problem of population admix-
ture. The customary TDTD has been applied to affected
children and their parents, and most often to case-parent
trios. Information from unaffected control-parent trios can
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Fig.3 The regions in the two
dimensional parameter (p and
φaa) space in which the TDTDS
is more powerful than the
TDTDC when the marker locus
is a DSL per se and p=f. In the
comparison, η =90% and α=
10–7; again, the choice of η and
α is indeed not important for
the purpose of comparison of
these tests. The threshold lines
divide the parameter space into
two parts. In the parameter
space to the upper left of the
threshold lines, the sample size
(N) needed is smaller in the
TDTDS than in the TDTDC;
thus, the TDTDS is more pow-
erful than the TDTDC in this
parameter region. In the param-
eter space to the lower right of
the threshold lines, it is the
other way around. In the reces-
sive model, γ1 is specified, and
the penetrance for the geno-
types AA, Aa, and aa are, re-
spectively, γ1φaa, φaa, and φaa.
For the other three models, γ is
specified and γ1 can be easily
inferred from the γ and the ge-
netic models under study



be employed in combination with unrelated case-parent
trios for an extension of the TDT (TDTDC) that can be
much more powerful than the TDTD in identifying DSL
(Deng and Chen 2001). For many diseases, it is generally
easy to obtain unaffected sibs for the affected individuals
(Boehnke and Langefeld 1998). Extensions of the TDT
have been developed for discordant sibs when the parents
are not available (Horvath and Laird 1998; Spielman and
Ewens 1998; Boehnke and Langefeld 1998). Whereas
these extensions for discordant sibs are valuable for late-
onset diseases when parental samples are not available,
the power of these TDT extensions is low when compared
with the customary TDTD (Whittaker and Lewis 1999).
For complex diseases when parents are available, we pre-
sent, by utilizing discordant sib-pair-parent tetrads, an ex-
tension of the TDTD, viz., the TDTDS, which can be much
more powerful than the TDTD in a large range of param-
eter space. The TDTDS is also always more powerful than
the TDTDC. We have derived an analytical method for
computation of the power of the TDTDS and the power of
the TDTD (applied to the case-parent trios ascertained
from the discordant sib-pair-parent tetrads). Our analyti-
cal power computation is general in that any genetic

model can be easily accounted for. The pedigree disequi-
librium test (PDT; Martin et al. 2000, 2001) developed for
pedigree analyses may also be applied to the family
tetrads with discordant sib pairs. However, our computer
simulations have shown (Table 2) that the power of the
TDTDS is higher than that of the PDT when the population
disease prevalence is high (e.g., >~30%). Hence, whereas
the PDT is extremely valuable for TDT analyses of pedi-
grees that have previously been collected and genotyped,
the TDTDS and its investigation here should be useful for
designing efficient sampling schemes for family tetrads
when the disease is prevalent in a study population.

Segregation distortion is a legitimate concern for sig-
nificant results obtained in the TDTD (Spielman et al.
1993; Schaid 1998). With segregation distortion, one al-
lele will be preferentially transmitted to children regard-
less of the affected status of children. Therefore, unaf-
fected children are necessary in order to rule out the pos-
sibility of segregation distortion in yielding significant re-
sults in the TDTD. This is essential in order to validate the
significance of a locus tested by the TDTD in relation to
an important DSL. Similar to the TDTD, the extensions of
the TDT tests that have been developed for discordant sib
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Fig.4 Numerical comparison
of the relative sample sizes
needed for the TDTDS and
TDTD in order to reach 90%
power. The X-axis is the allele
frequency p. The Y-axis is the
ratio (R) of the number N of
nuclear family tetrads needed
by the TDTDS to that of nuclear
family trios needed by the
TDTD. The marker locus is a
DSL per se and p=f, α=0.01,
φaa=0.15 in the recessive and
dominant model, φaa=0.1 in the
additive model, and φaa=0.05 
in the multiplicative model



pairs (without parents, Horvath and Laird 1998; Spielman
and Ewens 1998; Boehnke and Langefeld 1998) also may
not test for segregation distortion. This is because these
extensions test the difference of allele or genotype fre-
quencies in discordant sib pairs and cannot test for the
segregation distortion without parental genotype data. In
contrast, the TDTDC applied to case-parent trios and unre-
lated control-parent trios can be employed to test for seg-
regation distortion (Spielman et al. 1993; Deng and Chen
2001). Similarly, the TDTDS applied to discordant sib-
pair-parent tetrads can also be employed to test for segre-
gation distortion by the same principle. In the TDTDC
and/or the TDTDS, if significant test results are found, and
if the same allele is preferentially transmitted to affected
and unrelated unaffected children (in the TDTDC) or to the
affected and nonaffected sibs (in the TDTDS), then segre-
gation distortion, rather than a significant DSL, is sug-
gested. Otherwise, if significant results are found, and if
different alleles are preferentially transmitted to affected
and unaffected children (whether they are unrelated or re-
lated sibs), segregation distortion can be ruled out, and a
significant DSL is suggested. Therefore, both the TDTDC
and the TDTDS are significant and useful. First, they can
test for segregation distortion that is necessary in order to
validate a DSL that is suggested by the TDTD test. Sec-
ond, they may dramatically increase the power in detect-
ing a DSL relative to that of the TDTD, as demonstrated in
our study here (for the TDTDS) and in that in Deng and
Chen (2001, for the TDTDC).

Compared with the TDTDC, the TDTDS has the follow-
ing two significant advantages. First, the TDTDS is gener-
ally more powerful than the TDTDC and almost always so
in biologically plausible situations when the disease allele
frequency (p) is less than 0.5. Second, for the same num-
ber of affected and nonaffected children employed in
analysis, the genotyping for the TDTDS is much reduced,
and the ratio of the genotyping effort of the TDTDS to that
of the TDTDC is 2:3. This is simply because, for each pair
of affected and nonaffected sibs, only a pair of parents
needs to be genotyped in the TDTDS, whereas for each
pair of affected and nonaffected children, two pairs of par-
ents need to be genotyped in the TDTDC.

Although there is no doubt regarding the necessity of
testing for segregation distortion in order to validate a
positive result in the TDTD, the usefulness of unaffected
controls in the mapping of DSL is relatively controversial
(Schaid 1998; Scott et al. 1999). Our results here and
those in Deng and Chen (2001) unambiguously demon-
strate that the tests (the TDTDS and TDTDC) that effec-
tively combine controls in analyses can be more powerful
for DSL mapping than the TDTD. We note that, in almost
all the current extensions of the TDT analyses, data from
only a single type of nuclear family (case-parent trios, or
discordant sibs, or discordant sib-pair-parent tetrads, or
case-parent and unrelated control trios) are usually em-
ployed. However, in practice, we may have mixed sam-
ples of these different types of families. The ways in
which we can effectively combine the data from these dif-
ferent types of families into a single analysis and investi-

gate the statistical properties (power and size) of the tests
for combined data pose a challenge. Permutation-based
approaches (e.g., Spielman and Ewens 1998; Boehnke
and Langefeld 1998; Deng et al. 2001b) may be suitable
for the analyses of combined families of different types.
Furthermore, it has been suggested that nuclear families
specially ascertained by the affected status of some family
members may increase the power of the TDT analyses
(Whittaker and Lewis 1998). The combination of data of
families randomly ascertained and those ascertained
through various schemes and the analytical computation
of the associated power also present new challenges.
Some specific situations of these challenges have been ad-
dressed by authors such as Spielman and Ewens (1998),
Knapp (1999), and Martin et al. (2000). Extensions of the
TDT to various situations are useful for improving its
power and practical significance.
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