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STATISTICAL ALGORITHMS 477

E(NP) = ZERO
K=NP* (NP - 1) /] 2
DO 35 J =1, NP
K=K+1
35 E(NP) = E(NP) + XSSPI(K) * X(J)

c
A = ZERO
DO 40 I =1, NP
40 A = A + X(I) * E(I)
A=A+ONE /[ C
IF (ZABS(A) .LE. EPS) RETURN
IFAULT = 0
C
K=0
DO 70 T =1, NP
DO 70 J =1, I
K=K+1
XSSPI(K) = XSSPI(K) - E(I) * E(J) | A
70 CONTINUE
RETURN
END

Algorithm AS 241

The Percentage Points of the Normal Distribution

By Michael J. Wichuraf
University of Chicago, USA
[Received September 1987. Revised April 1988]

Keywords: Inverse normal; Normal percentage points

Language

Fortran 77

Description and Purpose

Two function routines are given to compute the percentage point z, of the standard
normal distribution corresponding to a prescribed value p for the lower tail area; the
relation between p and z,, is

p= J » (2n)~ 2 exp(—¢2/2)dl = O(z,), z,=®" ).
The first routine, PPND?7, is accurate to about seven figures (decimal) for 107316 <

min(p, 1 — p). The second routine, PPND16, is accurate to about 16 figures over the
same range.

't Address for correspondence: Department of Statistics, University of Chicago, 5734 University Avenue, Chicago,

IL 60637, USA.
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478 WICHURA
Numerical Method

The routines set g = p — 0.5 and compare g with 0.425.If | g | < 0.425, z, is obtained
as

z, = qA(0.425% — ¢*)/B(0.425% — ¢*) = qR,(q?),

R,(t) being a minimax rational approximation to ® (0.5 + /t)/,/t for 0 <t < 0.4252.
The polynomials 4 and B are of degree 3 for PPND7 and of degree 7 for PPND16.
However, if |q| >0.425, an auxiliary variable r = { — log[min(p, 1 — p)]}!/? is first
formed, and z, is obtained as

z,= + C(r—1.6)/D(r — 1.6) = &+ R,(r)
if r<5, and as
z,= + E(r — 5)/F(r — 5)= £ R5(r)

if > 5; in each case the sign is taken to be that of q. R,(¢) and R;(t) are minimax
rational approximations to — ® ™ }(exp(—t?)) over the ranges 1.6 <t<5and 5<t<
27 respectively. For PPND7, the polynomials C and E are of degree 3, while D and
F are of degree 2. For PPNDI16, C, D, E and F are of degree 7. Evaluation of the
polynomials A-F involves the addition and multiplication only of positive values;
this enhances the numerical stability of the routines.

Related Algorithms

The present algorithms are similar to algorithm PPND of AS 111 (Beasley
and Springer, 1977). Whereas that algorithm is accurate to between seven and nine
figures for |z,| < 3.5, its performance deterlorates in the tails of the distribution. For
example, its accuracy drops to six figures at z, = — 4 (p & 3 x 107%), to five figures at

z,= —55 (p~2x107%) and to four ﬁgures at z,=9.5 (p~10~2"). As noted
later, PPND?7 runs as fast as PPND. PPNDI16 is from 14 to 1% times slower than
PPND, but produces two to four times as many 31gn1ﬁcant dlglts Other algorithms
for evaluating z, are discussed in Kennedy and Gentle (1980).

Structure

REAL FUNCTION PPND7 (P, IFAULT)
REAL FUNCTION PPNDI6 (P, IFAULT)

Formal parameters
p Real input: value of the lower tail area p
IFAULT Integer output: fault indicator

Failure indications

IFAULT=1if p<0or p>1;, IFAULT =0 otherwise.
If IFAULT =1, PPND7 and PPNDI6 return a value of zero.
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STATISTICAL ALGORITHMS 479
Time

The present algorithms and PPND were evaluated on a Sun 2 (24-bit mantissa) with
the results shown in Table 1. (Whereas 0.425 is the (first) break point in PPND7 and
PPND16, the corresponding break point in PPND is 0.42.)

Accuracy

Tables 2 and 3 assess the relative error in the computed value of z, corresponding to a
given input value for p satisfying min(p, 1 — p) > 107316, In the a priori bounds 0 is
the relative error in the computed value of r = { — log[mln(p, — p)1}*/?, and 6 bounds
the relative error in a floating point add, multiply or divide. For a computer which
has base b and mantissa of fixed length m, and which carries out each arithmetic
operation internally in double precision and rounds (or chops) the result to m
significant digits, the user may take  =b~™~1/2 (or 6 = b~ ™~ V). For each of the
indicated ranges, the Monte Carlo results are based on 50 000 pseudorandom values
of p uniformly distributed on a logit scale; p was constrained to the range (1033,
1 —1075) for PPND7 and to (10779, 1 — 10~ 1%) for PPND16. PPND7 was evaluated
on a Sun 2 with b =2 and m = 24, PPND16 on an IBM 3081 with b =16 and m = 14.

TABLE 1
Average time for one evaluation

Precision Range PPND7 PPNDI6 PPND
(ms) (ms) (ms)
Single |p—0.5| <042 0.56 0.59
|p—0.5|>0.425 0.82 0.76
Double |p—0.5| <042 1.62 0.99
|p—0.5|>0.425 3.68 281
TABLE 2

Magnitude of the relative error in z, for PPND7

Range A priori Monte Carlo

upper bound Maximum Root mean square
|p—0.5| <0425 1136 +4.6 x 1078 29 %1077 80x 1078
|p—0.5]>0.425 12456+ 2|6/ +1.2x 1077 35%x1077 1.1x1077
TABLE 3

Magnitude of the relative error in z, for PPNDI16

Range A priori Monte Carlo

upper bound Maximum Root mean square
|p—0.5| <0425 185+ 7.4 x 10717 6.0 x 10716 1.8 x 10716
|p—0.5]>0425 226 +210] +29 x 10717 5.8 x 10716 1.6 x 10716
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480 WICHURA
Error Propagation

The effect of a perturbation in p can be assessed as follows. Suppose that p* = p + Ap
with Ap small. Set Az = z,» — z, and write ¢(z) for the normal density at z = z,. Then

[Ap|
Az| ~——
1Az1%730)
and
@) Ap| 1 1Ap| if p<0.5;
Ll @z 2 |S2 7
2|7 | 1—o@ A0 —p)| _1 (AQ-p)| .
<— " 5.
e =7 = =7 if p>0.5

In particular the absolute error in z is never more than 8/3 times as large as the
absolute error in p for | z| < 0.36, while the relative error in z is never more than 8/3
times as large as the relative error in min(p, 1 — p) for |z| > 0.36.

Test Data

The following values may be used in checking whether the algorithms have been
correctly implemented:

Zo.25 = —0.674 4897501960817,
Zo.001 = —3.090232 306 167 814,
Z10-20 = —9.262 340 089 798 408.

Precision
For double precision:

(a) change REAL to DOUBLE PRECISION on both the FUNCTION statements
and the declaration of variables;
(b) change EO to DO in the PARAMETER statements.

(On a machine that uses only 32 bits to represent real variables, PPND16 should be
implemented in double precision.)

Additional Comments

If p is very close to unity, a serious loss of significance may be incurred in forming
1 — p = c. In this circumstance the user should, if possible evaluate c directly (i.e. not
by subtracting p from unity) and evaluate z, as —

The coeflicients used in algorithms PPND7 and PPND16 were taken from Wichura
(1987), who gives similar sets of coefficients for rational approximations to ®~! with
minimax errors ranging down to 10722,

Acknowledgement
This paper was prepared using computer facilities supported in part by National

This content downloaded by the authorized user from 192.168.82.208 on Sun, 2 Dec 2012 11:16:35 AM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

STATISTICAL ALGORITHMS 481

Science Foundation grant DMS-8404941 to the Department of Statistics at the
University of Chicago.

References

Beasley, J. D. and Springer, S. G. (1977) The percentage points of the normal distribution. Appl. Statist., 26, 118-121.

Kennedy, W. J,, Jr, and Gentle, J. E. (1980) Statistical Computing. New York: Dekker.

Wichura, M. J. (1987) Minimax rational approximations to the percentage points of the normal distribution. Technical
Report 222. Department of Statistics, University of Chicago.

REAL FUNCTION PPND7 (P, IFAULT)

c
c ALGORITHM AS241  APPL. STATIST. (1988) VOL. 37, NO. 3
c
o PRODUCES THE NORMAL DEVIATE 2 CORRESPONDING TO A GIVEN LOWER
c TAIL AREA OF P; Z IS ACCURATE TO ABOUT 1 PART IN 10%*7,
c
c THE HASH SUMS BELOW ARE THE SUMS OF THE MANTISSAS OF THE
c COEFFICIENTS. THEY ARE INCLUDED FOR USE IN CHECKING
c TRANSCRIPTION.
c
REAL ZERO, ONE, HALF, SPLIT1, SPLIT2, CONST1, CONST2,
* A0, Al, A2, A3, Bl, B2, B3, Co0, Cl, C2, C3, D1, D2,
* E0, El, E2, E3, F1, F2, P, Q, R
PARAMETER (ZERO = 0.0EO, ONE = 1.0E0, HALF = ONE/2.0EO,
* SPLITL = 0.425E0, SPLIT2 = 5.0E0,
* CONSTL = 0.180625E0, CONST2 = 1.6E0)
c
c COEFFICIENTS FOR P CLOSE TO 1/2
PARAMETER (A0 = 3.38713 27179EO0,
* Al = 5.04342 71938E1,
* A2 = 1.59291 13202E2,
* A3 = 5.91093 74720E1,
* Bl = 1.78951 69469E1,
* B2 = 7.87577 57664EL,
* B3 = 6.71875 63600EL)
c HASH SUM AB  32.31845 77772
c
c COEFFICIENTS FOR P NEITHER CLOSE TO 1/2 NOR 0 OR 1
PARAMETER (CO = 1.42343 72777E0,
* Cl = 2.75681 53900E0,
* C2 = 1.30672 84816E0,
* €3 = 1.70238 21103E-1,
* D1 = 7.37001 64250E-1,
* D2 = 1.20211 32975E-1)
c HASH SUM CD  15.76149 29821
c
c COEFFICIENTS FOR P NEAR 0 OR 1
PARAMETER (EO = 6.65790 51150E0,
* El = 3.08122 63860E0,
* E2 = 4.28682 94337E-1,
* E3 = 1.73372 03997E-2,
* F1 = 2.41978 94225E-1,
* F2 = 1.22582 02635E-2)
c HASH SUM EF  19.40529 10204
c
IFAULT = 0
Q = P - HALF
IF (ABS(Q) .LE. SPLIT1) THEN

R = CONST1 - Q * Q
PPND7 = Q * (((A3 * R + A2) * R + Al) * R + A0) /
(((B3 * R + B2) * R + Bl) * R + ONE)
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482 WICHURA
RETURN

ELSE
IF (Q .LT. 0) THEN

R=P

ELSE
R = ONE - P

ENDIF

IF (R .LE. ZERO) THEN
IFAULT = 1
PPND7 = ZERO
RETURN

ENDIF

R = SQRT(-LOG(R))

IF (R .LE. SPLIT2) THEN
R = R - CONST2

[cNeNeNoNeoNeNeNeoNeoNe)

[eNeNel

PPND7 = (((C3 * R + C2) * R + C1) * R + CO) /
* ((D2 * R + D1) * R + ONE)
ELSE
R = R - SPLIT2
PPND7 = (((E3 * R + E2) * R + E1) * R + E0) /
* ((F2 * R + F1) * R + ONE)
ENDIF
IF (Q .LT. 0) PPND7 = -PPND7
RETURN
ENDIF
END

REAL FUNCTION PPND16 (P, IFAULT)

ALGORITHM AS241

PRODUCES THE NORMAL DEVIATE Z CORRESPONDING TO A GIVEN LOWER
IS ACCURATE TO ABOUT 1 PART IN 10%*16.

TAIL AREA OF P; 2

APPL. STATIST.

(1988) VOL. 37, NO. 3

THE HASH SUMS BELOW ARE THE SUMS OF THE MANTISSAS OF THE
COEFFICIENTS. THEY ARE INCLUDED FOR USE IN CHECKING

TRANSCRIPTION.

REAL ZERO, ONE, HALF, SPLITl1l, SPLIT2, CONST1l, CONST2,

* ¥ % *

P, Q, R

A0, Al, A2, A3, A4, A5, A6, A7, B1l, B2, B3, B4, B5, B6, B7,
co, c1, c2, c3, c4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7,
EO, El, E2, E3, E4, E5, E6, E7, Fl, F2, F3, F4, F5, F6, F7,

PARAMETER (ZERO = 0.0E0, ONE = 1.0E0, HALF = ONE/2.0EO0,

* SPLIT1 = 0.425E0,

SPLIT2 = 5.0E0,

* CONST1 = 0.180625E0, CONST2 = 1.6E0)

COEFFICIENTS FOR P CLOSE TO 1/2

PARAMETER (A0 = 3.38713

* Al = 1.33141
* A2 = 1.97159
* A3 = 1.37316
* A4 = 4.59219
* A5 = 6.72657
* A6 = 3.34305
* A7 = 2.50908
* Bl = 4.23133
* B2 = 6.87187
* B3 = 5.39419
* B4 = 2.12137
* B5 = 3.93078
* B6 = 2.87290
* B7 = 5.22649
HASH SUM AB 55.88319

28727
66789
09503
93765
53931
70927
75583
09287
30701
00749
60214
94301
95800
85735
52788
28806

96366
17843
06551
50946
54987
00870
58812
30122
60091
20579
24751
58659
09271
72194
52854
14901

6080E0,
7745E2,
4427E3,
1125E4,
1457E4,
0853E4,
8105E4,
6727E3,
1252E1,
0830E2,
1077E3,
5867E4,
0610E4,
2674E4,
5610E3)
4439

COEFFICIENTS FOR P NEITHER CLOSE TO 1/2 NOR O OR 1
PARAMETER (CO = 1.42343 71107 49683 57734EO0,
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HASH SUM CD
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4.63033
5.76949
3.64784
1.27045
2.41780
2.27238
7.74545
2.05319
1.67638
6.89767
1.48103
1.51986
5.47593
1.05075

49.33206

78461
72214
83247
82524
72517
44989
01427
16266
48301
33498
97642
66563
80849
00716
50330

56545
60691
63204
52368
74506
26918
83414
37758
83803
51000
74800
61645
95344
44416
16102

COEFFICIENTS FOR P NEAR O OR 1

PARAMETER (EO

* % % ¥ % ok % k K ¥ k ¥ * *

HASH SUM EF

IFAULT = 0
Q = P - HALF

6.65790
5.46378
1.78482
2.96560
2.65321
1.24266
2.71155
2.01033
5.99832
1.36929
1.48753
7.86869
1.84631
1.42151
2.04426

47.52583

46435
49111
65399
57182
89526
09473
55687
43992
20655
88092
61290
13114
83175
17583
31033
31754

IF (ABS(Q) .LE. SPLIT1) THEN
R = CONST1 - Q * Q

PPND16 = Q * (((((((A7 * R + A6) * R + A5) * R + A4) * R + A3)

* * R + A2) * R + Al) * R + A0) [/ (((((((B7 * R + B6) * R + B5)
* * R+ B4) * R + B3) * R + B2) * R + Bl) * R + ONE)
RETURN
ELSE
IF (Q .LT. 0) THEN
R=P
ELSE
R =O0NE - P
ENDIF
IF (R .LE. ZERO) THEN
IFAULT = 1
PPND16 = ZERO
RETURN
ENDIF

R = SQRT(-LOG(R))
IF (R .LE. SPLIT2) THEN

R = R - CONST2
PPND16 = (((((((C7 * R

* +C3) *R +C2) *R

*

+ D6) * R + D5) * R

* + D1) * R + ONE)

ELSE

R = R - SPLIT2
PPND16 = (((((((E7 * R
* + E3) * R + E2) * R

*

+ F6) * R + F5) * R

* + Fl1) * R + ONE)

ENDIF
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01103
64114
17291
85048
57612
88078
43487
92288
58879
27358
85061
56132
10054
16445
89939
92896

c6)
c1)
D4)

E6)
El)
F4)

* %
o m
+ + +

*
W W
+ + +

29590E0,
40550E0,
60504E0,
38258E0,
11770E-1,
45833E-2,
07640E-4,
82187E0,
84940E0,
04550E-1,
74590E-1,
71966E-2,
94600E-4,
84324E-9)
89036

77720E0,

36990E0,

33580E0,

91230E-1,
30930E-2,
43860E-3,
57815E-5,
13265E-7,
37690E-1,
05310E-1,
48525E-2,
59100E-4,
68180E-5,
88870E-7,

78564E-15)

71629

C5)
co)
D3)

E5)
E0)
F3)

* R + E4) * R
| (CCCCC(F7 * R
* R + F2) * R

483


http://www.jstor.org/page/info/about/policies/terms.jsp

484 SALLAS

IF (Q .LT. 0) PPND16 = -PPND16
RETURN

ENDIF

END

Remark AS R75
Some Remarks on Algorithm AS 164: Least Squares Subject to Linear Constraints

By William M. Sallast
IMSL, Houston, USA
[Received July 1987. Revised March 1988]

This paper addresses three items concerning the linear least squares algorithm with
linear equality constraints AS 164 (Stirling, 1981). The following items will be discussed
in sequence:

(a) a correction to subroutine GIVENC so that rounding errors that can arise
from incorporating linear constraints do not lead to totally incorrect results;

(b) an addition to subroutine ALIAS so that the R matrix computed corresponds
to a reduced model formed after all constraints have been incorporated in the
full (unconstrained) model;

(c) a modification to subroutine ALIAS to perform an improved check for linearly
dependent regressors (Healy, 1968).

First, subroutine GIVENC can return totally incorrect results because of rounding
errors that occur when constraints are incorporated into the R matrix. The incorrect
results occur frequently for linearly dependent constraints. Also, incorrect results can
occur for linearly independent constraints. These problems occur regardless of the
settings of small constants EPSO and EPS1 that are suggested for remedying these
problems.

The problem is that GIVENC needs to determine whether any element of a new
constraint that is reduced by the previous constraints in R should be regarded as
zero. For example, a new constraint that is linearly dependent on previous constraints
is usually not zeroed out exactly due to rounding, and the remaining garbage is
treated incorrectly as an additional linearly independent constraint. Even for linearly
independent constraints, a small number as the leading non-zero element in a reduced
constraint causes a totally different constraint to be incorporated in the fit. For
example, the following two linearly independent constraints

3.3ﬂ1 + 6.6ﬂ2 + 3.3ﬁ3 + 6.6ﬂ4 = 3.3
1.658, + 3.38, + 1.6585 + 6.68, = 6.6

are reduced using the original version of GIVENC (on a computer with a machine
epsilon in single precision approximately equal to 107°) to

B, = 1.00000 — 2.000 008, — 1.000 003, — 2.000 008,
B, =1730151—0.33333p, — 115343 58,

T Address for correspondence: IMSL, Park West Tower One, 2500 CityWest Boulevard, Houston, TX 77042, USA.
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