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Efforts to find disease genes using high-density single-
nucleotide polymorphism (SNP) maps will produce data sets
that exceed the limitations of current computational tools.
Here we describe a new, efficient method for the analysis of
dense genetic maps in pedigree data that provides extremely
fast solutions to common problems such as allele-sharing
analyses and haplotyping. We show that sparse binary trees
represent patterns of gene flow in general pedigrees in a parsi-
monious manner, and derive a family of related algorithms for
pedigree traversal. With these trees, exact likelihood calcula-
tions can be carried out efficiently for single markers or for
multiple linked markers. Using an approximate multipoint cal-
culation that ignores the unlikely possibility of a large number
of recombinants further improves speed and provides accurate
solutions in dense maps with thousands of markers. Our multi-
point engine for rapid likelihood inference (Merlin) is a com-
puter program that uses sparse inheritance trees for pedigree
analysis; it performs rapid haplotyping, genotype error detec-
tion and affected pair linkage analyses and can handle more
markers than other pedigree analysis packages.
Linkage and association studies routinely involve analyzing many
markers in related individuals to determine phased haplotypes, test
for cosegregation of disease and marker loci or identify problems in
genotyping. The shift to dense SNP maps1,2 poses new problems to
pedigree analysis packages3–9. Packages based on the Elston-Stew-
art algorithm10 can only handle a small number of markers and are
not well suited to SNP maps. On the other hand, memory require-
ments for the Lander-Green algorithm11 make analyzing hundreds
or thousands of markers a severe challenge in all but the smallest
pedigrees. Although Markov-Chain Monte-Carlo (MCMC) sam-
pling methods7,8,12 complement some of the deficiencies in these

two approaches, as the number of tightly linked markers increases,
it is difficult to guarantee their adequate convergence. Another
unresolved issue is undetected genotyping error, which seriously
hinders linkage and association studies13,14. As most SNP genotyp-
ing errors do not lead to mendelian inconsistencies15, SNPs require
specialized quality-control strategies.

The Lander-Green algorithm11 considers each alternative gene
flow pattern in a pedigree separately. Allele-sharing statistics for
each set of observed phenotypes and likelihoods conditional on
observed marker data are calculated and stored in memory4.
Because the pattern of gene flow through a pedigree is fully spec-
ified by noting whether the grand-maternal or grand-paternal
allele is transmitted in each meiosis, the results of these calcula-
tions are typically stored in a bit-indexed array (Fig. 1a), where
each index bit indicates the outcome of one meiosis4,9,16. Binary
trees provide another natural organization for results that
depend on gene flow patterns. Each level in the tree represents
one meiosis, and each branch corresponds to transmission of the
grand-maternal or grand-paternal allele (Fig. 1b). Often, many
alternative patterns of gene flow have the same outcome, and we
reasoned that sparse binary trees might provide an efficient
framework for pedigree analysis and extend the scope of the Lan-
der-Green algorithm to very large data sets. These sparse trees are
a reduced representation of the full binary tree, where gene flow
patterns with identical outcomes are combined into symmetric
and premature leaf nodes (Fig. 1c).

We first evaluated the performance of gene flow trees in single
marker analyses using simulated replicates of pedigree D (Fig. 2),
which includes 40 meioses. Usually the maternal or paternal origin
of founder alleles cannot be discerned, and only 232 representative
outcomes must be considered4. If outcomes were enumerated in

an array, this analysis would
exceed the storage capacity of
most modern workstations. In
comparison, trees describing
gene flow pattern likelihoods
for  SNP markers with equifre-
quent alleles and 20% missing
data have a median size of less
than 900 nodes, and are even
smaller for more informative
markers or smaller amounts of
missing data (Table 1). This
saves significant amounts of
both storage and computing
time, and similar savings result
when allele-sharing statistics are
calculated for most pedigrees.

Published online: 3 December 2001, DOI: 10.1038/ng786

Table 1 • Complexity of inheritance tree for pedigree Da

Missing Total nodes Leaf
genotypes Infob Mean Median 95% C.I. nodesc

four-allele marker with equifrequent alleles
– 0.72 154.7 72 64–603 5.2

5% 0.68 245.2 122 64–1,166 9.9
10% 0.64 446.3 171 65–2,429 24.1
20% 0.55 1,747.4 405 69–15,943 107.3
50% 0.28 19,880.6 2,882 154–140,215 2,574.5

two-allele marker with equifrequent alleles
– 0.42 706.0 151 57–5,447 66.9

5% 0.39 1,299.8 225 57–8,443 159.6
10% 0.36 2,157.7 329 61–15,361 148.9
20% 0.31 8,595.9 872 64–42,592 1,293.9
50% 0.14 55,639.1 4,477 135–383,407 9,173.5

aPedigree D is represented in Fig. 2. bAverage marker informativeness4. cThe average number of leaf nodes, which cor-
respond to full likelihood evaluations. These statistics summarize 1,000 replicates.
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We next examined whether multipoint calculations using the
Lander-Green algorithm11 could be carried out efficiently when
sparse binary trees replace the traditional array organization of
likelihoods. The Lander-Green algorithm uses a Markov chain to
calculate likelihoods for all gene flow patterns at arbitrary chro-
mosomal locations. The algorithm’s rate-limiting step is the
transition between informative markers, where probabilities
conditional on all markers telomeric to a particular location are
derived from conditional likelihoods at the previous marker.
This step involves an expensive matrix multiplication operation
that can benefit from the redundancies summarized in sparse
gene flow trees. For very sparse trees that index a small number of
nonzero likelihoods, we used this information in a sparse
matrix–vector multiplication algorithm17. For trees that index a
larger number of nonzero likelihoods, we used the Idury-Elston
divide-and-conquer algorithm18 that proceeds through succes-
sive bisections of inheritance space. In this case, the amount of
computation is reduced whenever bisection of inheritance space
results in identical sub-trees.

Table 2 compares the performance of sparse binary tree–based
pedigree analysis using Merlin with two state-of-the-art programs
implementing the Lander-Green algorithm, Allegro9 and Gene-
hunter16. The benchmark involved calculation of a nonparametric
linkage statistic and pair-wise IBD probabilities for all relative pairs
as well as the most likely haplotype path through a pedigree (Mer-
lin, Allegro) or a fast approximation16 to this solution (Gene-
hunter). All three programs completed analysis of pedigree B, but
Merlin performed fastest, whether analyses were required between
markers (1 m 47 s with grand-parental genotypes, 1 m 17 s with-
out) or at marker locations only (18 s with grand-parental geno-
types, 25 s without). The three programs cope with the complexity
of pedigree C differently: Genehunter treats meioses with known
outcomes separately to reduce the number of possibilities stored in
memory16 and was successful only when grand-parental genotypes
were available; Allegro swaps intermediate results to disk9 and
requires 20 GB of temporary storage to complete analyses; Merlin
uses sparse binary trees to summarize redundancies in inheritance
space and completed analysis in memory in less than two hours.

Fig. 1 Alternative representations of
gene flow in a pedigree. a, A bit-
indexed array. The most common rep-
resentation, this uses a sequence of
binary digits, or an inheritance vector,
to specify the outcome of each meio-
sis. Each of these sequences serves as
an index into an array where the sta-
tistic of interest is stored. b, A packed
tree in which individual meioses are
represented as new levels, and likeli-
hoods or other statistics are evaluated
for each leaf node. c, A sparse tree, in
which each branch (meiosis) is evalu-
ated conditional on the outcome of
preceding meioses. Evaluation stops
early in sections producing invariant
outcomes, resulting in premature leaf
nodes (red circles). These occur, for
example, when an impossible gene
flow pattern is detected. Uninforma-
tive meioses produce symmetric
nodes and further increase sparseness
(orange circle with arrow). These
occur, for example, when both
parental alleles are indistinguishable.

Table 2 • Comparative timings for Genehunter, Allegro and Merlin (with 5% missing data)

All individuals in pedigree genotyped

A (×1000) B C D

Genehunter (v 2.1)
exact 54 s (38 s) 7 m 41 s (37 s) 16 h 43 m 24 s (18 m 16 s) *

Allegro (v 1.1b)
exact 30 s (18 s) 2 m 48 s (2m17 s) 5 h 16 m 30 s (3 h 54 m 13 s) *

Merlin (v 0.1)
exact 16 s (11 s) 1m 47 s (18 s) 1 h 55 m 14 s (13 m 55 s) *
approximation 22 s (15 s) 4 s (2 s) 36 s (20 s) 1 m 28 s (59 s)

Top generation not genotyped

A (×1000) B C D

Genehunter (v 2.1)
exact 1 m 03 s (45 s) 8 m 25 s (1 m 54 s) * *

Allegro (v 1.1b)
exact 30 s (18 s) 1 m 29 s (1 m 08 s) 1 h 29 m 11 s (1 h 12 m 38 s) *

Merlin (v 0.1)
exact 18 s (13 s) 1 m 17 s (25 s) 47 m 35 s (15 m 50 s) *
approximation 27 s (18 s) 11 s (6 s) 2 m 38 s (1 m 30 s) 3 m 45 s (2 m 09 s)

Nonparametric linkage analysis, haplotyping and pair-wise IBD estimation were carried out at every marker location and halfway between consecutive markers
(parentheses indicate analysis at marker locations only) on a 700 Mhz Pentium III with 2 GB of RAM (and 20 GB of disk for Allegro). Fifty microsatellite markers,
with four equifrequent alleles, were simulated at 2-cM spacing. ‘Approximation’ indicates calculations assuming two or fewer recombinants between consecu-
tive markers; all other rows refer to exact calculations. *Analysis could not be completed due to memory requirements.

a

b

c

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/g

en
et

ic
s.

n
at

u
re

.c
o

m



letter

nature genetics • volume 30 • january 2002 99

The number of catalogued SNP markers presents not only
daunting computational challenges but also opportunities to
develop solutions that account for reduced recombination
between markers. Merlin can construct approximate solutions
for dense maps where the probability of observing several recom-
binants between consecutive markers is close to zero by restrict-
ing analysis to gene flow patterns separated by a few
recombination events or less. For the ‘Approximation’ row in
Table 2, calculations assumed no more than two recombinants
between consecutive markers. With this assumption, we could
estimate haplotypes, lod scores and pair-wise IBD probabilities
for pedigree D, and calculation speed improved for pedigrees B
and C. In 1,000 realizations of pedigree B, Spearman’s rank cor-
relation coefficient between nonparametric Z-scores derived by
this approximation and exact Z-scores was rs=0.999, whereas the
mean absolute difference between the two was less than 0.01. If
no recombination between markers is assumed, Merlin can list
all possible non-recombinant haplotypes in a pedigree with min-
imal computing requirements. These nonrecombinant haplo-
types could be used to estimate founder haplotype frequencies19

in measured haplotype analyses of candidate genes20 or when
microsatellite markers are replaced with clusters of SNPs.

Merlin also has the ability to conduct a sensitivity analysis of
the multipoint likelihood. This analysis identifies genotypes
that imply a recombination pattern that is not supported by
neighboring markers and which are likely to be erroneous
(Methods). Table 3 summarizes the performance of our error-
detection strategy in a 1-cM SNP map, assuming all errors are
hard-to-detect single-allele changes. Note that the majority of
such errors do not produce mendelian inconsistencies, even
when both parents are typed. The proportion of errors
detected by Merlin increases with the number of genotyped
individuals in each family, from approximately 16% with only
two genotyped siblings to greater than 60% in families with
four genotyped siblings, or more than 90% of errors when
both parents and at least two offspring are genotyped. Note
that even when only a minority of errors is detected, a signifi-
cant amount of power can be recovered13. In general, perfor-
mance improves with the number of genotyped individuals
and increased map density. In sib pairs with no parents, per-
formance is similar to previous methods13.

We have described a representation of gene flow patterns based
on sparse binary trees that extends the scope of the Lander-Green
algorithm to much larger problems. We also describe a compan-
ion genotype-error detection strategy. As part of an analysis of
chromosome-wide SNP haplotypes (E. Dawson et al., manu-
script submitted), we have haplotyped over 1,500 SNP markers
in pedigrees of up to 24-bit complexity using less than 2 GB of
memory and 500 MB of disk space. These analyses would
require over 500 GB of storage using alternative methods. It is
likely that additional opportunities exist for constructing
approximate solutions based on sparse inheritance trees. For
example, trees could be ‘pruned’ by removing unlikely gene
flow patterns or, borrowing practices used in digital-signal pro-
cessing, trees could be quantized by marking contiguous pat-
terns of gene flow with similar likelihoods as effectively
identical. Alternatively, trees could be manipulated within the
reduced inheritance space described by Markianos et al.16 to
provide even faster exact solutions.

We have implemented our new approach in a C++ program
that is freely available. Merlin carries out common single-
point and multipoint analyses of pedigree data, including IBD
and kinship calculations, nonparametric and variance compo-
nent linkage analyses, error detection and information content
mapping. For multipoint analyses in dense maps, Merlin
allows the user to impose constraints on the number of recom-
binants between consecutive markers. Merlin estimates haplo-
types by finding the most likely path of gene flow or by
sampling paths of gene flow at all markers jointly. It can also
list all possible nonrecombinant haplotypes within short
regions. Finally, Merlin provides swap-file support for han-
dling very large numbers of markers as well as gene-dropping
simulations for estimating empirical significance levels.

Methods
Definitions. Consider a pedigree with f founders (individuals with no
ancestors in the pedigree) and n nonfounders (their descendants). If each
individual has either both parents or else none at all in the pedigree there
will be 2n parent–offspring pairs. Each parent–offspring pair corresponds
to a single meiotic event. For each chromosomal location l, let the inheri-
tance vector vl represent gene flow in a pedigree through a sequence of 2n
binary digits, such that the ith digit, vl(i), is 0 if the grand-maternal allele is
transmitted in the meiosis connecting offspring oi and parent pi, and 1 oth-
erwise. Define the index of the first digit in any such vector to be 1 so that i
ranges between 1 and 2n.

Sparse gene flow trees. A common strategy for analyzing pedigree data is
to enumerate all possible inheritance vectors (v) and calculate likelihoods
and/or linkage statistics for the pedigree conditional on each v. If vectors

Fig. 2  Sample pedigrees used in simulations. Pedigree A is typical of affected sib-
pair studies. Pedigree B, C and D are larger pedigrees used for benchmarking.
Complexity (2n–f) is 4, 19, 25 and 32 bits for pedigrees A, B, C and D, respectively.
If grandparents are not genotyped and male and female recombination fractions
are assumed equal, complexity becomes 4, 18, 23 and 30 bits, respectively9.

Table 3 • Summary of unlikely genotype analyses
in nuclear families

Mendelian Unlikely Overall
errors genotypes detection rate

No genotyped parents
2 siblings 0.00 0.16 0.16
3 siblings .00 .38 .38
4 siblings .00 .61 .61
5 siblings .00 .77 .77

One genotyped parent
2 siblings 0.13 0.34 0.47
3 siblings .13 .58 .71
4 siblings .12 .72 .84
5 siblings .12 .78 .91

Two genotyped parents
2 siblings 0.37 0.56 0.93
3 siblings .37 .56 .93
4 siblings .38 .59 .97
5 siblings .37 .60 .97

We simulated a map of 21 SNP markers with equal allele frequencies separated
by 1 cM and introduced a single-allele change in the first offspring’s middle-
marker genotype. The table lists the proportion (in 10,000 replicates) of geno-
types resulting in mendelian incompatibilities or flagged as unlikely, as well as
an overall error detection rate. The proportion of mendelian errors is 0.0, 0.125
and 0.375 depending on whether zero, one or two parental genotypes are
available, respectively. Additional variation in results is due to sampling error.
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are inspected in a sequential fashion, the complexity of these problems is
proportional to the number of possible inheritance vectors, 22n, and pro-
hibitive for pedigrees of moderate size. Often, the calculations required
(and their results) are similar for many different v, and smart algorithms
can be constructed. For example, if inheritance vectors are enumerated in
Gray code order17,21, consecutive vectors differ by a single digit (meiosis)
and the statistic of interest can be calculated with 22n partial updates (each
update could be carried out using a previously described method7).

We propose that conducting calculations in the space of sparse gene flow
trees reduces both computation and storage requirements for common
genetic applications and provides an efficient approach for analyzing arbi-
trary pedigrees of moderate size. Sequential binary choices can be repre-
sented as binary trees where each bifurcation represents one digit. For
inheritance vectors, each level in the tree represents an individual meiosis
(Fig. 1b). These binary trees can be constructed using recursive functions,
where each evaluation updates the statistic of interest using information
contributed by fixing the outcome of the current meiosis and then creates
two new branches that correspond to alternative outcomes for the follow-
ing meiosis and are processed by recursion. This would require 22n+1–1
partial updates, which is about twice as many as are required when enu-
merating inheritance vectors in Gray code order. For many applications,
however, some meioses are not informative when evaluated conditional on
the outcome of predecessor meioses.

In sparse inheritance trees, two additional types of node obviate unnec-
essary bifurcations in a standard binary tree: (i) symmetric nodes, where
the statistic of interest yields identical outcomes on both branches of the
tree and (ii) premature leaf nodes, where the statistic of interest yields
identical outcomes for all subsequent branches of the tree (Fig. 1c). Note
that each symmetric node has only one child tree, so that symmetry
detected at meiosis i reduces the size of the tree by 22n+1–i–1 nodes. A pre-
mature leaf node at meiosis i reduces the size of the tree by 22n+1–i–2 nodes.
In a recursive function, information accumulated up to meiosis i can be
used to decide whether to evaluate and store the outcomes of the next
meiosis separately (using a bifurcation node), together (in a symmetric
node) or not at all (in a premature leaf node).

As binary trees and sparse binary trees are simply compact representa-
tions of inheritance vectors, common vector operators such as compo-
nent-wise multiplication and addition retain their natural definitions.

Single-marker likelihoods. Let Gl be a set of genotypes for a codominant
marker at location l. Although Gl will usually not identify a unique pattern
of gene flow at l, it defines a likelihood for every inheritance vector vl.
Briefly, this likelihood can be calculated by enumerating a set A(Gl,vl)
including all founder allele states a=[a1, a2, …, a2f] compatible with both vl

and Gl. Then the likelihood is L(vl|Gl) ∝ 2–2nΣaΠi f(ai), where f(ai) is the
frequency of allele ai. This likelihood assumes no errors in Gl; later, we pro-
pose a strategy for identifying such errors.

Although Gl defines a vector of likelihoods for all inheritance vectors at
location l (λl|Gl

), the storage and CPU time requirements for defining λl|Gl

through exhaustive enumeration of all vl are prohibitive for pedigrees with
more than approximately 30 meioses. Many vl imply identical founder
allele sets Al and have equal likelihood, and many of these redundancies
can be summarized in sparse binary trees using the following procedure:

When constructing a tree for locus l, update Al and Gl conditional on
the outcomes of meioses 1…i–1 before evaluating meiosis i. Then define a
premature leaf node if the likelihood for all nodes in this part of the tree is
zero, that is, if Al=∅ (for example, if this set of meiotic outcomes requires
allele sharing between individuals with different genotypes). Define a sym-
metric node if parent pi is known to be homozygous or if offspring oi and
all its descendants are not genotyped, as, in these cases, Al is independent
of the outcome of meiosis i. If symmetry or zero-likelihood nodes cannot
be identified, add a branching node and proceed to evaluate meiosis i+1.

Full multipoint calculations. Let G=[G1, G2, …, Gk] define a set of co-
dominant genotypes for k markers separated by recombination fractions
θ=[θ1,2, θ2,3, …, θk–1,k]. Assuming no interference, the likelihood of inher-
itance vectors at an arbitrary location l conditional on all observed geno-
types, λl|G,θ, can be derived from the single marker likelihoods λl|Gl

at each
location using a hidden Markov process11.

Briefly, the likelihood for any inheritance vector v, λ l|G,θ(v), can be
factorized into a left conditional likelihood, λ l|G1..l–1,θ1–l

(v), a right

conditional likelihood, λ l|Gl+1..k,θl..k(v), and a single marker likelihood
λ l|Gl

(v). That is, λ l|G,θ(v)=λ l|G1..l–1,θ1..l(v) λ l|Gl
(v) λ l|Gl+1..k,θl..k(v). Now

define transition matrices Tθa,b for each pair of consecutive loci a and b,
with elements Tθa,b(v,w)=θa,b

r(v,w)(1–θa,b)2n–r(v,w), where r(v,w) is the
number of differences between inheritance vectors v and w. Then left
conditional likelihoods at locus l, λ l|G1..l–1,θ1..l, can be defined on the
basis of left conditional likelihoods at locus l–1, λ l–1|G1..l–1,θ1..l–1, as:

λl|G1..l,θ1..l(v)=λl|G1..l–1,θ1..l(v)λl|Gl
(v) and

λl|G1..l–1,θ1..l=Tθl–1,lλl–1|G1..l–1,θ1..l–1.

At the first marker, the left conditional likelihoods are simply λ1|G1.
Right conditional probabilities can be calculated through an analogous
Markov process. The rate-limiting steps in this Markov process are the suc-
cessive multiplications of transition matrices and likelihood vectors and
sparse binary trees. If the number of nonzero likelihoods at two neighbor-
ing locations l and l–1 is small, then sparse binary trees can be used as an
index of nonzero likelihoods in sparse matrix–vector multiplication algo-
rithms17. Alternatively, each convolution can be carried out by successive
bisections of inheritance vector space18. These bisections correspond to
recursively processing offspring trees for each node. Performance benefits,
because the transforms of symmetric nodes and premature leaf nodes are
also symmetric nodes and premature leaf nodes, respectively.

Multipoint analysis in dense maps. If all recombination fractions are
small, it may be reasonable to assume that the probability of observing two
or more recombinants between consecutive markers is effectively zero.
This corresponds to setting all elements (v,w) of the transition matrix,
Tθa,b, to zero if r(v,w)>1 and produces a very sparse transition matrix.
Then the Markov chain used to calculate left and right conditional proba-
bilities can use sparse matrix-vector multiplication and considers only the
most likely inheritance vectors. To extend this approximation to up to r
recombination events in each step in the Markov chain and to allow effi-
cient computation, we divide the interval between loci a and b into n equal
segments and assume no more than one recombinant in each segment.
Then we apply the original approximation r times using the correspond-
ingly smaller recombination fraction. The expected number of recombi-
nants between consecutive markers l and l+1 in a pedigree is simply the
product of the number of meioses, 2n, and the recombination fraction,
θl,l+1; in general, these approximations are useful when 2nθl,l+1<1.

Nonparametric linkage statistics. Statistics that measure sharing among
affected individuals can be scored using a strategy similar to that used for
single-marker likelihoods. First, update the statistic of interest up to meio-
sis i–1. Then define either a symmetric node if meiosis i connects parent pi
to unaffected offspring oi and all descendants of offspring oi are also unaf-
fected, or a premature leaf node if all further meioses lead to unaffected
individuals only. Otherwise, add a branching node to the tree and proceed
to meiosis i+1, evaluating the two possible outcomes of meiosis i.

Error detection. Erroneous genotypes can imply excessive and unlikely
recombination events between tightly linked markers. To detect unlikely
genotypes, we calculate the likelihood of observed genotypes conditional
on all recombination fractions L(G|θ) and also assuming that all markers
are unlinked, L(G|θ=1⁄2). We then mark, in turn, each genotype g as
unknown and updated these likelihoods to obtain L(G\g|θ) and
L(G\g|θ=1⁄2). If the information provided by g was consistent with neigh-
boring markers, we expect that the ratio rlinked=L(G\g|θ)/L(G|θ) would be
small compared to runlinked=L(G\g|θ=1⁄2)/L(G|θ=1⁄2). Genotypes that pro-
vide information inconsistent with neighboring markers, however, will
cause the statistic r=rlinked/runlinked to take unusually large values.

In the absence of errors, we expect that the probability of observing statistic
r is less than 1/r for any pedigree structure and missing data pattern. There are
two options for interpreting the statistic: select a large value of r as the thresh-
old for flagging problem genotypes (such as r>100) or determine the precise
relationship between r and false-positive rates through simulation. Geno-
types where r>40 were flagged as errors (Table 3). This corresponds to a false-
positive rate of <0.001 through simulation. The proportion of detected errors
changed by less than 5% in all cases, if a threshold of r>100 was used.

Merlin. Merlin is available with source code at http://bioinformatics.
well.ox.ac.uk/Merlin and http://www.sph.umich.edu/csg/abecasis/Merlin.
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