Population Stratification and The Total Evidence for Association
QTDT can evaluate the evidence for population stratification
using a quantitative phenotype and a single marker (for details,
see the papers of Fulker et al and Abecasis et al). Use the -ap
model of association to do this. For example, qtdt -d sibs.dat
-p sibs.ped -i sibs.ibd -x-99.999 -ap -wega evaluates the
evidence for stratification at each marker in the sibs data set.
Try it...
Testing trait: Trait
=============================================
Testing marker: SNP_1
---------------------------------------------
Allele df(0) LnLk(0) df(S) LnLk(S) ChiSq p
1 : 194 674.61 193 674.58 0.06 ( 164/200 probands)
Testing marker: SNP_2
---------------------------------------------
Allele df(0) LnLk(0) df(S) LnLk(S) ChiSq p
1 : 194 678.35 193 678.30 0.10 ( 152/200 probands)
Testing marker: SNP_3
---------------------------------------------
Allele df(0) LnLk(0) df(S) LnLk(S) ChiSq p
1 : 194 682.76 193 682.61 0.30 ( 168/200 probands)
|
In this data set, QTDT finds no evidence for stratification.
If you are confident there is no stratification, you might test
the total evidence for association (ie, not a TDT). To do this,
use the -at option. For example, run qtdt -d sibs.dat
-p sibs.ped -i sibs.ibd -x-99.999 -at -wega to evaluate the
total evidence for association in the sibs data set.
Testing trait: Trait
=============================================
Testing marker: SNP_1
---------------------------------------------
Allele df(0) LnLk(0) df(X) LnLk(X) ChiSq p
1 : 195 685.20 194 674.61 21.18 0.0000 (200 probands)
Testing marker: SNP_2
---------------------------------------------
Allele df(0) LnLk(0) df(X) LnLk(X) ChiSq p
1 : 195 685.22 194 678.35 13.75 0.0002 (200 probands)
Testing marker: SNP_3
---------------------------------------------
Allele df(0) LnLk(0) df(X) LnLk(X) ChiSq p
1 : 195 685.21 194 682.76 4.91 0.0268 (200 probands)
|
The total evidence for association is strongest for SNP_1.
What next, functional studies?... I hope you found this tour useful,
and happy gene hunting!
|